• Congratulations to the Class of 2024 on your results!
    Let us know how you went here
    Got a question about your uni preferences? Ask us here

I want a free lunch (2 Viewers)

spatula232

Active Member
Joined
Jul 18, 2013
Messages
348
Location
Mars One
Gender
Male
HSC
2015
So yesterday our math teacher said if we could solve this, he'd buy us lunch...

How many solutions to:
a+b+c+d=6
Where a, b, c and d are positive integers (can be 0), and the same number can be repeated (i.e. a, b, c and d could all equal 1)
 

InteGrand

Well-Known Member
Joined
Dec 11, 2014
Messages
6,109
Gender
Male
HSC
N/A
So yesterday our math teacher said if we could solve this, he'd buy us lunch...

How many solutions to:
a+b+c+d=6
Where a, b, c and d are positive integers (can be 0), and the same number can be repeated (i.e. a, b, c and d could all equal 1)
Kind of cheap if you don't solve it yourself and ask for lunch. lol
 

sheroom

New Member
Joined
May 25, 2015
Messages
8
Gender
Male
HSC
2016
Give me 10 minutes I can figure this one out and give an equation that you can use.
 

kawaiipotato

Well-Known Member
Joined
Apr 28, 2015
Messages
463
Gender
Undisclosed
HSC
2015
What Integrand said.l
But
A similar question could be
How many ways can you place 'n' cats into 'n-2' cages?
 

BlueGas

Well-Known Member
Joined
Sep 20, 2014
Messages
2,448
Gender
Male
HSC
N/A
lol, you should have not posted that you'll get "free lunch" so you'll actually get help haha.
 

Drsoccerball

Well-Known Member
Joined
May 28, 2014
Messages
3,650
Gender
Undisclosed
HSC
2015
So yesterday our math teacher said if we could solve this, he'd buy us lunch...

How many solutions to:
a+b+c+d=6
Where a, b, c and d are positive integers (can be 0), and the same number can be repeated (i.e. a, b, c and d could all equal 1)
As my physics teacher says, "In this universe there is no free lunch"
 

Drongoski

Well-Known Member
Joined
Feb 22, 2009
Messages
4,255
Gender
Male
HSC
N/A
I think this is a Partitioning = Occupancy problem. 84 is correct.

For this question:

No of ways =
 
Last edited:

Users Who Are Viewing This Thread (Users: 0, Guests: 2)

Top