Ok part 2.
LHS=(sin2x)(1-cosx)/(cosx)(1-cos2x)
=(2sinxcosx)(1-cosx)/(cosx)(1-cos^2x+sin^2x)
=(2sinx)(1-cosx)/(1-cos^2x+sin^2x)
=(2sinx)(1-cosx)/(2sin^2x)
=(1-cosx)/(sinx)
So far I've just used sin2x, cos2x, 1-cos^2x substitutions to simplify.
Now substituting cosx=(1-t^2)/(1+t^2), and...