MedVision ad

Amortisation Schedules (1 Viewer)

Kimberley

New Member
Joined
Sep 3, 2004
Messages
2
Location
Wollongong
hey everyone.. just wondering if someone can help me...cant seem to get it right....

heres the details...

Amount Borrowed - $150,000
Residual at end - $30,000
Interest % pa - 10.5
Term (yrs) - 5
Compounding periods pa - 12

Monthly repayment - $2,817.12
Total Repaid - $169,027.10
Total Interest - $49,027.10
 

Halo

Member
Joined
Nov 28, 2002
Messages
52
Location
Heaven.
Gender
Undisclosed
HSC
N/A
Firstly, this is not an amortisation schedule. Its a Loan Repayment schedule.

I assume the question is to construct a schedule given those details. Take note of the following:
1. The interest rate is quoted p.a. whereas the compounding periods are in months. Thus, you will need to divide the interest rate by 12 to find the rate per compounding period (there are other ways to do this, but I will not go into that).
2. Assume the payments are made at the start of each period (i.e., not in arrears).

So, my resulting schedule (consistent with the details you provided) looks like this (I hope the format holds!):

Period // Principal @ beginning of period // Interest charge // Repayment // Principal @ end of period
1 147182.88 1287.8502 2817.12 145653.6102
2 145653.6102 1274.469089 2817.12 144110.9593
3 144110.9593 1260.970894 2817.12 142554.8102
4 142554.8102 1247.354589 2817.12 140985.0448
5 140985.0448 1233.619142 2817.12 139401.5439
6 139401.5439 1219.763509 2817.12 137804.1874
7 137804.1874 1205.78664 2817.12 136192.8541
8 136192.8541 1191.687473 2817.12 134567.4215
9 134567.4215 1177.464938 2817.12 132927.7665
10 132927.7665 1163.117957 2817.12 131273.7644
11 131273.7644 1148.645439 2817.12 129605.2899
12 129605.2899 1134.046286 2817.12 127922.2162
13 127922.2162 1119.319391 2817.12 126224.4155
14 126224.4155 1104.463636 2817.12 124511.7592
15 124511.7592 1089.477893 2817.12 122784.1171
16 122784.1171 1074.361024 2817.12 121041.3581
17 121041.3581 1059.111883 2817.12 119283.35
18 119283.35 1043.729312 2817.12 117509.9593
19 117509.9593 1028.212144 2817.12 115721.0514
20 115721.0514 1012.5592 2817.12 113916.4906
21 113916.4906 996.7692931 2817.12 112096.1399
22 112096.1399 980.8412244 2817.12 110259.8612
23 110259.8612 964.7737851 2817.12 108407.5149
24 108407.5149 948.5657558 2817.12 106538.9607
25 106538.9607 932.2159061 2817.12 104654.0566
26 104654.0566 915.7229953 2817.12 102752.6596
27 102752.6596 899.0857715 2817.12 100834.6254
28 100834.6254 882.302972 2817.12 98899.80834
29 98899.80834 865.373323 2817.12 96948.06167
30 96948.06167 848.2955396 2817.12 94979.23721
31 94979.23721 831.0683256 2817.12 92993.18553
32 92993.18553 813.6903734 2817.12 90989.75591
33 90989.75591 796.1603642 2817.12 88968.79627
34 88968.79627 778.4769674 2817.12 86930.15324
35 86930.15324 760.6388408 2817.12 84873.67208
36 84873.67208 742.6446307 2817.12 82799.19671
37 82799.19671 724.4929712 2817.12 80706.56968
38 80706.56968 706.1824847 2817.12 78595.63216
39 78595.63216 687.7117814 2817.12 76466.22395
40 76466.22395 669.0794595 2817.12 74318.18341
41 74318.18341 650.2841048 2817.12 72151.34751
42 72151.34751 631.3242907 2817.12 69965.5518
43 69965.5518 612.1985783 2817.12 67760.63038
44 67760.63038 592.9055158 2817.12 65536.4159
45 65536.4159 573.4436391 2817.12 63292.73953
46 63292.73953 553.8114709 2817.12 61029.43101
47 61029.43101 534.0075213 2817.12 58746.31853
48 58746.31853 514.0302871 2817.12 56443.22881
49 56443.22881 493.8782521 2817.12 54119.98707
50 54119.98707 473.5498868 2817.12 51776.41695
51 51776.41695 453.0436483 2817.12 49412.3406
52 49412.3406 432.3579803 2817.12 47027.57858
53 47027.57858 411.4913126 2817.12 44621.94989
54 44621.94989 390.4420616 2817.12 42195.27196
55 42195.27196 369.2086296 2817.12 39747.36058
56 39747.36058 347.7894051 2817.12 37278.02999
57 37278.02999 326.1827624 2817.12 34787.09275
58 34787.09275 304.3870616 2817.12 32274.35981
59 32274.35981 282.4006484 2817.12 29739.64046
60 29739.64046 260.221854 0 29999.86232

Notes:
1. You need to focus on the compounding periods (i.e. months), not in years. This gives 5 x 12 = 60.
2. The first principal at the beginning of the period is calculated as 150000 - 2817.12 = 147182.88 because I assume the payments are made immediately at the beginning of each period.
3. This further implies that there will be no payment at the 60th period.
 
Last edited:

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top