Hotdog1
Yummmmmmmmmm...
- Joined
- Jun 27, 2003
- Messages
- 159
- Gender
- Male
- HSC
- 2010
Hi, has anyone done these questions from the Fitzpatrick 3U book? Ex 29(a)?
Q50
by considering the coefficinets of
1+(1+x)+(1+x)^2+...+(1+x)^n,
prove that [nCr]+[(n-1)Cr]+[(n-2)Cr]+...+[rCr] = [(n+1)C(r+1)]
similarly consdering
x^n+[x^(n-1)](1+x)+[x^(n-2)](1+x)^2+...+(1+x)^n,
find the sum [nCr]+[(n-1)C(r-1)]+[(n-2)C(r-2)]+...+[(n-r-1)C1]
Q51
If P_r = [nCr]*x^r*(1-x)^(n-r),
Show that P_1 + 2P_2 +3P_3 + ... + nP_n =nx
Q52
By considering the coefficients of x^2r *(2r<n) in the expansion of (1+x)^n*(1-x)^n and (1-x^2)^n,
show that
[nC(r-1)][nC(r+1)] - [nC(r-2)][nC(r+2)] + ... + (-1)^r*[nC1][nC(2r-1)] - (-1)^r*[nC2r] = (1/2)[nCr][(nCr)-1]
Thanks alot!
Q50
by considering the coefficinets of
1+(1+x)+(1+x)^2+...+(1+x)^n,
prove that [nCr]+[(n-1)Cr]+[(n-2)Cr]+...+[rCr] = [(n+1)C(r+1)]
similarly consdering
x^n+[x^(n-1)](1+x)+[x^(n-2)](1+x)^2+...+(1+x)^n,
find the sum [nCr]+[(n-1)C(r-1)]+[(n-2)C(r-2)]+...+[(n-r-1)C1]
Q51
If P_r = [nCr]*x^r*(1-x)^(n-r),
Show that P_1 + 2P_2 +3P_3 + ... + nP_n =nx
Q52
By considering the coefficients of x^2r *(2r<n) in the expansion of (1+x)^n*(1-x)^n and (1-x^2)^n,
show that
[nC(r-1)][nC(r+1)] - [nC(r-2)][nC(r+2)] + ... + (-1)^r*[nC1][nC(2r-1)] - (-1)^r*[nC2r] = (1/2)[nCr][(nCr)-1]
Thanks alot!