Note that the two curves given are inverse functions, and thus reflections in
![](https://latex.codecogs.com/png.latex?\bg_white y = x)
.
The points
![](https://latex.codecogs.com/png.latex?\bg_white A)
and
![](https://latex.codecogs.com/png.latex?\bg_white B)
lie on
![](https://latex.codecogs.com/png.latex?\bg_white y = 2 - x)
, which is perpendicular to
![](https://latex.codecogs.com/png.latex?\bg_white y = x)
.
Consider
![](https://latex.codecogs.com/png.latex?\bg_white P\,\left(\cfrac{1}{2},\,\cfrac{3}{2}\right))
, which is also on
![](https://latex.codecogs.com/png.latex?\bg_white y=2-x)
but further from
![](https://latex.codecogs.com/png.latex?\bg_white y=x)
than is
![](https://latex.codecogs.com/png.latex?\bg_white y=2^x)
because
![](https://latex.codecogs.com/png.latex?\bg_white 2^{\frac{1}{2}} = \sqrt{2} = 1.414... < \cfrac{3}{2})
.
The reflection of
![](https://latex.codecogs.com/png.latex?\bg_white P)
in
![](https://latex.codecogs.com/png.latex?\bg_white y = x)
is
![](https://latex.codecogs.com/png.latex?\bg_white P'\,\left(\cfrac{3}{2},\,\cfrac{1}{2}\right))
.
The distance
![](https://latex.codecogs.com/png.latex?\bg_white PP')
is greater than the distance
![](https://latex.codecogs.com/png.latex?\bg_white AB)
as
![](https://latex.codecogs.com/png.latex?\bg_white A)
and
![](https://latex.codecogs.com/png.latex?\bg_white B)
lie between
![](https://latex.codecogs.com/png.latex?\bg_white P)
and
![](https://latex.codecogs.com/png.latex?\bg_white P')
on
![](https://latex.codecogs.com/png.latex?\bg_white y=2-x)
.
Further, the distance
![](https://latex.codecogs.com/png.latex?\bg_white PP')
is
![](https://latex.codecogs.com/png.latex?\bg_white \sqrt{1^2 + 1^2} = \sqrt{2})
.
Thus the distance
![](https://latex.codecogs.com/png.latex?\bg_white AB < \sqrt{2})
, as required.