Question 1:
a. Find ∫ [dx/(x2+49)].
∫ [dx/(x2+49)] = (1/7).tan-1(x/7) + C
b. Sketch the region in the plane defined by y<=|2x+3|.
Sketch y=|2x+3|, and shade under the function.
c. State the domain and range of y=cos-1(x/4).
Domain: -1<=(x/4)<=1
Domain: -4<=x<=4
Range: 0<=y<=pi
d. Using the substitution u=2x2+1, or otherwise, find ∫ x(2x2+1)5/4dx.
u=2x2+1
du/dx = 4x
du = 4x.dx
∫ x(2x2+1)5/4dx = (1/4).∫ 4x(2x2+1)5/4dx
= (1/4).∫ u5/4du
= (1/4).(4u9/4/9) + C
= u9/4/9 + C
= (2x2+1)9/4/9 + C
e. The point P(1,4) divides the line segment joining A(-1,8) and B(x,y) internally in the ratio 2:3. Find the coordinate of the point B.
1 = [2x+3(-1)]/[2+3]
5 = 2x-3
2x = 8
x = 4
4 = [2y+3(8)]/[2+3]
20 = 2y+24
2y = -4
y = -2
So the point is B(4,-2).
f. The acute angle between the lines y=3x+5 and y=mx+4 is 45°. Find the two possible values of m.
y = 3x+5
y' = 3
.:. m1 = 3
y = mx+4
.:. m2 = m
tan@ = |(m1-m2)|/|1+m1m2|
tan45° = |(3-m)|/|1+3m|
There are two possibilities:
1 = (3-m)/(1+3m)
1+3m = 3-m
4m = 2
m = 1/2
OR
-1 = (3-m)(1+3m)
-1-3m = 3-m
-2m = 4
m = -2
.:. So m = 1/2 or m = -2
#
a. Find ∫ [dx/(x2+49)].
∫ [dx/(x2+49)] = (1/7).tan-1(x/7) + C
b. Sketch the region in the plane defined by y<=|2x+3|.
Sketch y=|2x+3|, and shade under the function.
c. State the domain and range of y=cos-1(x/4).
Domain: -1<=(x/4)<=1
Domain: -4<=x<=4
Range: 0<=y<=pi
d. Using the substitution u=2x2+1, or otherwise, find ∫ x(2x2+1)5/4dx.
u=2x2+1
du/dx = 4x
du = 4x.dx
∫ x(2x2+1)5/4dx = (1/4).∫ 4x(2x2+1)5/4dx
= (1/4).∫ u5/4du
= (1/4).(4u9/4/9) + C
= u9/4/9 + C
= (2x2+1)9/4/9 + C
e. The point P(1,4) divides the line segment joining A(-1,8) and B(x,y) internally in the ratio 2:3. Find the coordinate of the point B.
1 = [2x+3(-1)]/[2+3]
5 = 2x-3
2x = 8
x = 4
4 = [2y+3(8)]/[2+3]
20 = 2y+24
2y = -4
y = -2
So the point is B(4,-2).
f. The acute angle between the lines y=3x+5 and y=mx+4 is 45°. Find the two possible values of m.
y = 3x+5
y' = 3
.:. m1 = 3
y = mx+4
.:. m2 = m
tan@ = |(m1-m2)|/|1+m1m2|
tan45° = |(3-m)|/|1+3m|
There are two possibilities:
1 = (3-m)/(1+3m)
1+3m = 3-m
4m = 2
m = 1/2
OR
-1 = (3-m)(1+3m)
-1-3m = 3-m
-2m = 4
m = -2
.:. So m = 1/2 or m = -2
#
Last edited: