My question states
(1+sinx+icosx)/(1+sinx-icosx) = sinx + icosx
DEDUCE that
(1+sin pi/5 + icos pi/5)^5 + i(1 + sin pi/5 - i cos pi/5) = 0
I have to prove that LHS = RHS right, but am i allowed to divide the whole equation by (1 + sin pi/5 - i cos pi/5)
so i get (sin pi/5 + icos pi/5)^5 + i = 0?
(1+sinx+icosx)/(1+sinx-icosx) = sinx + icosx
DEDUCE that
(1+sin pi/5 + icos pi/5)^5 + i(1 + sin pi/5 - i cos pi/5) = 0
I have to prove that LHS = RHS right, but am i allowed to divide the whole equation by (1 + sin pi/5 - i cos pi/5)
so i get (sin pi/5 + icos pi/5)^5 + i = 0?