Are you sure that's right? I can't get it using only 3U knowledgeHi can anybody help to integrate (3x-2)(2x-3)^1/2
Thanks
i think it's (3x-2)[(2x-3)^-1/2]
Wolfram Mathematica Online IntegratorIf it was (ii), ∫ (3x - 2)(2x - 3)0.5 dx
Let u = 2x - 3
=> x = (u + 3)/2
=> dx = du/2
Hence
3x - 2 = 3(u + 3)/2 - 2
= (3u + 5)/2
∫ (3x - 2)(2x - 3)0.5 dx = (1/4) ∫ (3u + 5)u0.5 du
= (1/4) ∫ (3u1.5 + 5u0.5) du
= (1/4) [6u2.5/5 + 10u1.5/3] + c
= (1/4) [6(2x - 3)2.5/5 + 10(2x - 3)1.5/3] + c
Hope the working's right....lol
from memory this is 4u method where you have to make your own substitution?If it was (ii), ∫ (3x - 2)(2x - 3)0.5 dx
Let u = 2x - 3
=> x = (u + 3)/2
=> dx = du/2
Hence
3x - 2 = 3(u + 3)/2 - 2
= (3u + 5)/2
∫ (3x - 2)(2x - 3)0.5 dx = (1/4) ∫ (3u + 5)u0.5 du
= (1/4) ∫ (3u1.5 + 5u0.5) du
= (1/4) [6u2.5/5 + 10u1.5/3] + c
= (1/4) [6(2x - 3)2.5/5 + 10(2x - 3)1.5/3] + c
Hope the working's right....lol
It's pretty much the same steps as I outlined in the above posts.Hi sorry the original problem should be
Integral of (3x-2)(2x-3)^-0.5
The answer is (x+1)(2x-3)^0.5 + C
can you please show the steps involved to get this.
Thank you very much, and sorry about my first blunder.
Ahh ofcourse, thanks for the clarification TrebNote that:
(1/4) [6(2x - 3)2.5/5 + 10(2x - 3)1.5/3] + c
= (1/4) (2x - 3)1.5 [6(2x - 3)/5 + 10/3] + c
= (1/4) (2x - 3)1.5 [(36x - 54 + 50)/15] + c
= (1/4) (2x - 3)1.5 [(36x - 4)/15] + c
= (1/4) (4/15) (2x - 3)1.5 (9x - 1) + c
= (1/15) (2x - 3)1.5 (9x - 1) + c
Yeah, that was my Q, the original Q couldn't have been done using 3U (since no substitution given is 4U, except for this Q: int. sin^2@cos@d@). But as you can see the Q was written incorrect, solutions provided by Unthouchablecuz and Nomad would be the answer for the fixed question, and would be within 3U. I still think it's an ugly Q for 3U though, 4U it's pretty standard thoughfrom memory this is 4u method where you have to make your own substitution?
adikaye i thought this was your original problem, is there a way to do this 3u style, or is making your own substitution 3u? =S
even so, its not that hard anyway to do a linear substitution, all you do is substitute u = (whatever is within the function that isn't linear), and then rewrite the linear part so that it is with respect to u.no i was told thinking up your own substitution was only in 4U, in 3U, they tell you which one to use (and sometimes they do in 4U)
What a useful post, considering how much it helped to solve the question.integration in general is not hard