Please helppp :) (2 Viewers)

darkphoenix

Member
Joined
Mar 2, 2011
Messages
60
Gender
Male
HSC
2012
In part 3, should it the 2 equations be 2-2a-b=0 and 6-4a+b=0 , therefore a=2 and b=2?
 

deswa1

Well-Known Member
Joined
Jul 12, 2011
Messages
2,256
Gender
Male
HSC
2012
can u do (iii) plzzzz :)
Like AAEldar said, we need the rest of the question. Probably the easiest way to do it however (I'm guessing as I don't know the specific question), would be to manipulate the sums of roots inside each of the brackets. For example, if alpha+beta+gamma=9, then alpha+beta=9-gamma and then you can sub that in.
 

deswa1

Well-Known Member
Joined
Jul 12, 2011
Messages
2,256
Gender
Male
HSC
2012
<a href="http://www.codecogs.com/eqnedit.php?latex=\alpha @plus;\beta @plus;\gamma =0 \\ \therefore \alpha @plus; \beta=-\gamma \\ \alpha @plus; \gamma=-\beta \\ \gamma@plus; \beta=-\alpha \\ (\alpha@plus;\beta)^2(\gamma@plus;\beta)^2(\alpha@plus;\gamma)^2=(-\gamma)^2(-\beta)^2(-\alpha)^2 \\ =(-\alpha\beta\gamma)^2 \\ =(5)^2\\ =25" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\alpha +\beta +\gamma =0 \\ \therefore \alpha + \beta=-\gamma \\ \alpha + \gamma=-\beta \\ \gamma+ \beta=-\alpha \\ (\alpha+\beta)^2(\gamma+\beta)^2(\alpha+\gamma)^2=(-\gamma)^2(-\beta)^2(-\alpha)^2 \\ =(-\alpha\beta\gamma)^2 \\ =(5)^2\\ =25" title="\alpha +\beta +\gamma =0 \\ \therefore \alpha + \beta=-\gamma \\ \alpha + \gamma=-\beta \\ \gamma+ \beta=-\alpha \\ (\alpha+\beta)^2(\gamma+\beta)^2(\alpha+\gamma)^2=(-\gamma)^2(-\beta)^2(-\alpha)^2 \\ =(-\alpha\beta\gamma)^2 \\ =(5)^2\\ =25" /></a>
 

umm what

Banned
Joined
Nov 6, 2011
Messages
609
Location
North Ryde
Gender
Female
HSC
N/A
<a href="http://www.codecogs.com/eqnedit.php?latex=\alpha @plus;\beta @plus;\gamma =0 \\ \therefore \alpha @plus; \beta=-\gamma \\ \alpha @plus; \gamma=-\beta \\ \gamma@plus; \beta=-\alpha \\ (\alpha@plus;\beta)^2(\gamma@plus;\beta)^2(\alpha@plus;\gamma)^2=(-\gamma)^2(-\beta)^2(-\alpha)^2 \\ =(-\alpha\beta\gamma)^2 \\ =(5)^2\\ =25" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\alpha +\beta +\gamma =0 \\ \therefore \alpha + \beta=-\gamma \\ \alpha + \gamma=-\beta \\ \gamma+ \beta=-\alpha \\ (\alpha+\beta)^2(\gamma+\beta)^2(\alpha+\gamma)^2=(-\gamma)^2(-\beta)^2(-\alpha)^2 \\ =(-\alpha\beta\gamma)^2 \\ =(5)^2\\ =25" title="\alpha +\beta +\gamma =0 \\ \therefore \alpha + \beta=-\gamma \\ \alpha + \gamma=-\beta \\ \gamma+ \beta=-\alpha \\ (\alpha+\beta)^2(\gamma+\beta)^2(\alpha+\gamma)^2=(-\gamma)^2(-\beta)^2(-\alpha)^2 \\ =(-\alpha\beta\gamma)^2 \\ =(5)^2\\ =25" /></a>
Thnxx broo :)
How does alpha + beta + gamma = 0
:S
 
Last edited:

Users Who Are Viewing This Thread (Users: 0, Guests: 2)

Top