• Best of luck to the class of 2024 for their HSC exams. You got this!
    Let us know your thoughts on the HSC exams here
  • YOU can help the next generation of students in the community!
    Share your trial papers and notes on our Notes & Resources page
MedVision ad

Help with the following questions please (1 Viewer)

Boonyak

Member
Joined
Feb 15, 2012
Messages
222
Gender
Male
HSC
2012
Hey guys can you help with these questions mainly 8 and 9 if you could do 7 and 10 it would be appreciated, for question 8 i dont get how to sketch it showing pi/6 etc, please show with working out if you dont want to do the whole question please do the begging to help me start thanks


photo.jpg.
 

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
<a href="http://www.codecogs.com/eqnedit.php?latex=\dpi{150} \int_{0}^{\frac{\pi}{3}}\textup{ sin}(2-\textup{x}) ~\textup{dx} \\ = \left [\textup{cos}(2-\textup{x}) \right ]_{0}^{\frac{\pi}{3}} \\ = cos(2-\frac{\pi}{3}) - cos(2) \\ \approx 0.9955 ~(4 dp)" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\dpi{150} \int_{0}^{\frac{\pi}{3}}\textup{ sin}(2-\textup{x}) ~\textup{dx} \\ = \left [\textup{cos}(2-\textup{x}) \right ]_{0}^{\frac{\pi}{3}} \\ = cos(2-\frac{\pi}{3}) - cos(2) \\ \approx 0.9955 ~(4 dp)" title="\dpi{150} \int_{0}^{\frac{\pi}{3}}\textup{ sin}(2-\textup{x}) ~\textup{dx} \\ = \left [\textup{cos}(2-\textup{x}) \right ]_{0}^{\frac{\pi}{3}} \\ = cos(2-\frac{\pi}{3}) - cos(2) \\ \approx 0.9955 ~(4 dp)" /></a>

<a href="http://www.codecogs.com/eqnedit.php?latex=\dpi{100} \int_{0.5}^{1} \textup{sec}^2(\textup{x}) ~\textup{dx} , ~ integral ~of~ sec^2(x) ~is ~tan(x) \\\\ = \left [ \textup{tan}(\textup{x}) \right ]_{0.5}^{1} \\ = \textup{tan}(1) - \textup{tan}(0.5) \\ \approx 1.01 (2\textup{dp})" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\dpi{100} \int_{0.5}^{1} \textup{sec}^2(\textup{x}) ~\textup{dx} , ~ integral ~of~ sec^2(x) ~is ~tan(x) \\\\ = \left [ \textup{tan}(\textup{x}) \right ]_{0.5}^{1} \\ = \textup{tan}(1) - \textup{tan}(0.5) \\ \approx 1.01 (2\textup{dp})" title="\dpi{100} \int_{0.5}^{1} \textup{sec}^2(\textup{x}) ~\textup{dx} , ~ integral ~of~ sec^2(x) ~is ~tan(x) \\\\ = \left [ \textup{tan}(\textup{x}) \right ]_{0.5}^{1} \\ = \textup{tan}(1) - \textup{tan}(0.5) \\ \approx 1.01 (2\textup{dp})" /></a>

<a href="http://www.codecogs.com/eqnedit.php?latex=\dpi{120} A = \int_{a}^{b} y~dx \\ = 2 \int_{0}^{\frac{\pi}{6}} 3sinx ~dx \\ = 2\left [ -3cos(x) \right ]_{0}^{\frac{\pi}{6}} \\ =2\left [ -3cos(\frac{\pi}{6}) @plus; 3 \right ] \\ =2\left [ \frac{-3\sqrt{3}}{2} @plus; 3\right ] \\ =-3\sqrt{3} @plus; 6~ units^2" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\dpi{120} A = \int_{a}^{b} y~dx \\ = 2 \int_{0}^{\frac{\pi}{6}} 3sinx ~dx \\ = 2\left [ -3cos(x) \right ]_{0}^{\frac{\pi}{6}} \\ =2\left [ -3cos(\frac{\pi}{6}) + 3 \right ] \\ =2\left [ \frac{-3\sqrt{3}}{2} + 3\right ] \\ =-3\sqrt{3} + 6~ units^2" title="\dpi{120} A = \int_{a}^{b} y~dx \\ = 2 \int_{0}^{\frac{\pi}{6}} 3sinx ~dx \\ = 2\left [ -3cos(x) \right ]_{0}^{\frac{\pi}{6}} \\ =2\left [ -3cos(\frac{\pi}{6}) + 3 \right ] \\ =2\left [ \frac{-3\sqrt{3}}{2} + 3\right ] \\ =-3\sqrt{3} + 6~ units^2" /></a>

<a href="http://www.codecogs.com/eqnedit.php?latex=\dpi{120} 10 ~b) \int_{0}^{\frac{\pi}{2}} cos^3(x)sin(x)~dx = \left [ -\frac{1}{4}cos^4(x) \right ]_{0}^{\frac{\pi}{2}}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\dpi{120} 10 ~b) \int_{0}^{\frac{\pi}{2}} cos^3(x)sin(x)~dx = \left [ -\frac{1}{4}cos^4(x) \right ]_{0}^{\frac{\pi}{2}}" title="\dpi{120} 10 ~b) \int_{0}^{\frac{\pi}{2}} cos^3(x)sin(x)~dx = \left [ -\frac{1}{4}cos^4(x) \right ]_{0}^{\frac{\pi}{2}}" /></a>

Q8.png
 
Last edited:

Boonyak

Member
Joined
Feb 15, 2012
Messages
222
Gender
Male
HSC
2012
Thanks for the quick and detailed responses highLy
Apreciated and just a question if I were
To sketch the area question where would pi/6 lie on the x axis ?
 

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
Thanks for the quick and detailed responses highLy
Apreciated and just a question if I were
To sketch the area question where would pi/6 lie on the x axis ?
well pi/6 is 30. so roughly between 0 and pi/2 more to the left. if that explains it...
 
Joined
Apr 1, 2011
Messages
1,012
Location
District 12
Gender
Male
HSC
2013
<a href="http://www.codecogs.com/eqnedit.php?latex=\dpi{150} \int_{0}^{\frac{\pi}{3}}\textup{ sin}(2-\textup{x}) ~\textup{dx} \\ = \left [\textup{cos}(2-\textup{x}) \right ]_{0}^{\frac{\pi}{3}} \\ = cos(2-\frac{\pi}{3}) - cos(2) \\ \approx 0.9955 ~(4 dp)" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\dpi{150} \int_{0}^{\frac{\pi}{3}}\textup{ sin}(2-\textup{x}) ~\textup{dx} \\ = \left [\textup{cos}(2-\textup{x}) \right ]_{0}^{\frac{\pi}{3}} \\ = cos(2-\frac{\pi}{3}) - cos(2) \\ \approx 0.9955 ~(4 dp)" title="\dpi{150} \int_{0}^{\frac{\pi}{3}}\textup{ sin}(2-\textup{x}) ~\textup{dx} \\ = \left [\textup{cos}(2-\textup{x}) \right ]_{0}^{\frac{\pi}{3}} \\ = cos(2-\frac{\pi}{3}) - cos(2) \\ \approx 0.9955 ~(4 dp)" /></a>

<a href="http://www.codecogs.com/eqnedit.php?latex=\dpi{100} \int_{0.5}^{1} \textup{sec}^2(\textup{x}) ~\textup{dx} , ~ integral ~of~ sec^2(x) ~is ~tan(x) \\\\ = \left [ \textup{tan}(\textup{x}) \right ]_{0.5}^{1} \\ = \textup{tan}(1) - \textup{tan}(0.5) \\ \approx 1.01 (2\textup{dp})" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\dpi{100} \int_{0.5}^{1} \textup{sec}^2(\textup{x}) ~\textup{dx} , ~ integral ~of~ sec^2(x) ~is ~tan(x) \\\\ = \left [ \textup{tan}(\textup{x}) \right ]_{0.5}^{1} \\ = \textup{tan}(1) - \textup{tan}(0.5) \\ \approx 1.01 (2\textup{dp})" title="\dpi{100} \int_{0.5}^{1} \textup{sec}^2(\textup{x}) ~\textup{dx} , ~ integral ~of~ sec^2(x) ~is ~tan(x) \\\\ = \left [ \textup{tan}(\textup{x}) \right ]_{0.5}^{1} \\ = \textup{tan}(1) - \textup{tan}(0.5) \\ \approx 1.01 (2\textup{dp})" /></a>

<a href="http://www.codecogs.com/eqnedit.php?latex=\dpi{120} A = \int_{a}^{b} y~dx \\ = 2 \int_{0}^{\frac{\pi}{6}} 3sinx ~dx \\ = 2\left [ -3cos(x) \right ]_{0}^{\frac{\pi}{6}} \\ =2\left [ -3cos(\frac{\pi}{6}) @plus; 3 \right ] \\ =2\left [ \frac{-3\sqrt{3}}{2} @plus; 3\right ] \\ =-3\sqrt{3} @plus; 6~ units^2" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\dpi{120} A = \int_{a}^{b} y~dx \\ = 2 \int_{0}^{\frac{\pi}{6}} 3sinx ~dx \\ = 2\left [ -3cos(x) \right ]_{0}^{\frac{\pi}{6}} \\ =2\left [ -3cos(\frac{\pi}{6}) + 3 \right ] \\ =2\left [ \frac{-3\sqrt{3}}{2} + 3\right ] \\ =-3\sqrt{3} + 6~ units^2" title="\dpi{120} A = \int_{a}^{b} y~dx \\ = 2 \int_{0}^{\frac{\pi}{6}} 3sinx ~dx \\ = 2\left [ -3cos(x) \right ]_{0}^{\frac{\pi}{6}} \\ =2\left [ -3cos(\frac{\pi}{6}) + 3 \right ] \\ =2\left [ \frac{-3\sqrt{3}}{2} + 3\right ] \\ =-3\sqrt{3} + 6~ units^2" /></a>

<a href="http://www.codecogs.com/eqnedit.php?latex=\dpi{120} 10 ~b) \int_{0}^{\frac{\pi}{2}} cos^3(x)sin(x)~dx = \left [ -\frac{1}{4}cos^4(x) \right ]_{0}^{\frac{\pi}{2}}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\dpi{120} 10 ~b) \int_{0}^{\frac{\pi}{2}} cos^3(x)sin(x)~dx = \left [ -\frac{1}{4}cos^4(x) \right ]_{0}^{\frac{\pi}{2}}" title="\dpi{120} 10 ~b) \int_{0}^{\frac{\pi}{2}} cos^3(x)sin(x)~dx = \left [ -\frac{1}{4}cos^4(x) \right ]_{0}^{\frac{\pi}{2}}" /></a>

View attachment 25680
When you integrate sinx, don't you get negative cosx?
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top