Integration Q (1 Viewer)

Kipling

New Member
Joined
Feb 6, 2013
Messages
29
Gender
Male
HSC
2013
How do you integrate ln(x) / x^4 from 1 to e? Thanks in advance
 

HeroicPandas

Heroic!
Joined
Mar 8, 2012
Messages
1,547
Gender
Male
HSC
2013
As asianese said in the 4u marathon, IBP (integration by parts)

let u = ln(x) and dv = 1/x^4 dx

blah blah
 

Kipling

New Member
Joined
Feb 6, 2013
Messages
29
Gender
Male
HSC
2013
Another question: Using the f(x) = f(a-x) rule regarding integration, prove that (xsin(2x))/(1+cos(2x)) from 0 to pi/2 equals (pi^2)/16

Also: <a href="http://www.codecogs.com/eqnedit.php?latex=\mathrm{If} \; \; I_{n}= \int sec^nx, \mathrm\; \mathrm{{show\: that }}\; I_{n}= \frac{1}{n-1}(tanxsec^{n-2})@plus;\frac{n-2}{n-1}I_{n-2} \; \; \; \; \; \mathrm{Hence \: evaluate\: }I_{4}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\mathrm{If} \; \; I_{n}= \int sec^nx, \mathrm\; \mathrm{{show\: that }}\; I_{n}= \frac{1}{n-1}(tanxsec^{n-2})+\frac{n-2}{n-1}I_{n-2} \; \; \; \; \; \mathrm{Hence \: evaluate\: }I_{4}" title="\mathrm{If} \; \; I_{n}= \int sec^nx, \mathrm\; \mathrm{{show\: that }}\; I_{n}= \frac{1}{n-1}(tanxsec^{n-2})+\frac{n-2}{n-1}I_{n-2} \; \; \; \; \; \mathrm{Hence \: evaluate\: }I_{4}" /></a>
 
Last edited:

Makematics

Well-Known Member
Joined
Mar 26, 2013
Messages
1,829
Location
Sydney
Gender
Male
HSC
2013
Another question: Using the f(x) = f(a-x) rule regarding integration, prove that (xsin(2x))/(1+cos(2x)) from 0 to pi/2 equals (pi^2)/16

Also: <a href="http://www.codecogs.com/eqnedit.php?latex=\mathrm{If} \; \; I_{n}= \int sec^nx, \mathrm\; \mathrm{{show\: that }}\; I_{n}= \frac{1}{n-1}(tanxsec^{n-2})@plus;\frac{n-2}{n-1}I_{n-2} \; \; \; \; \; \mathrm{Hence \: evaluate\: }I_{4}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\mathrm{If} \; \; I_{n}= \int sec^nx, \mathrm\; \mathrm{{show\: that }}\; I_{n}= \frac{1}{n-1}(tanxsec^{n-2})+\frac{n-2}{n-1}I_{n-2} \; \; \; \; \; \mathrm{Hence \: evaluate\: }I_{4}" title="\mathrm{If} \; \; I_{n}= \int sec^nx, \mathrm\; \mathrm{{show\: that }}\; I_{n}= \frac{1}{n-1}(tanxsec^{n-2})+\frac{n-2}{n-1}I_{n-2} \; \; \; \; \; \mathrm{Hence \: evaluate\: }I_{4}" /></a>
For the second part, it should be a simple IBP. split the integral into sec^(n-2)x and sec^2x and then let u=sec^(n-2)x, v=tanx, and proceed.
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top