juantheron
Active Member
- Joined
- Feb 9, 2012
- Messages
- 259
- Gender
- Male
- HSC
- N/A
Re: MX2 Integration Marathon
![](https://latex.codecogs.com/png.latex?\bg_white \displaystyle \int\frac{1}{(x+\alpha)^{1+\frac{1}{n}}\cdot (x+\beta)^{1-\frac{1}{n}}}dx = \int \frac{1}{\left(\frac{x+\alpha}{x+\beta}\right)^{1+\frac{1}{n}}}\cdot \frac{1}{(x+\beta)^2}dx)
![](https://latex.codecogs.com/png.latex?\bg_white $Now \; let \; $\displaystyle \left(\frac{x+\alpha}{x+\beta}\right) = t$\;,then \; $\displaystyle \frac{1}{(x+\beta)^2}dx = \frac{1}{(\beta-\alpha)}dt$)
![](https://latex.codecogs.com/png.latex?\bg_white $So\ Integral \; convert \; into \; $\displaystyle \frac{1}{(\beta-\alpha)}\int \frac{1}{t^{1+\frac{1}{n}}}dt = \frac{1}{(\beta-\alpha)}\int t^{-1-\frac{1}{n}}dt $)
![](https://latex.codecogs.com/png.latex?\bg_white $\displaystyle = \frac{1}{(\beta-\alpha)}\cdot \frac{t^{-\frac{1}{n}}}{-\frac{1}{n}}+\mathbb{C} = \frac{1}{(\beta-\alpha)}\cdot -n \cdot \frac{1}{t^{\frac{1}{n}}}+\mathbb{C}$)
![](https://latex.codecogs.com/png.latex?\bg_white $where \; $\displaystyle t = \left(\frac{x+\alpha}{x+\beta}\right)$)
View attachment 30312 -> Question
Using the substitutionView attachment 30314 Made this one up![]()
Yeh sweetpretty much what i did, after simplifying you should get something like View attachment 30315
Nice question, works out very neatly