FDOwnes Q11(E 6.11 Q 6 from Grove)
A missile is launched at an initial trajectory of 68o and a velocity of 1200ms-1. Neglecting air resistance anf the curvature of the earth and taking the acceleration due to gravity as 9.8ms-2, calculate; a) The time taken for its flight (to the nearest minute), b) How far away it will hit its target (to the nearest km).
Vertical Distance
∫ -9.8 dt= -9.8t+C
t=0, v=1200 sin 68
C=1200 sin 68
y*=-9.8t+1200 sin 68
y= ∫ -9.8t+ 1200 sin 68 dt
y=-4.9t^2+1200t sin 68+C
t=0, y=0-> C=0
y=-4.9t^2+1200 t sin 68
let y=0, to determine the time of flight
0=-4.9t^2+1200 t sin 68
0=t(-4.9t+1200 sin 68)
t= 227 seconds which is close to 4 minutes (to the nearest minute)
b) How far away will it hit the target
HORIZONTAL
a=∫ 0 dt= 0t+C
t=0, a=0---->C=0
v=∫ 0 dt
v=0t +C
when t=0, v=1200 cos 68--->C=1200 cos 68
C=1200 cos 68
v=1200 cos 68
x=∫ 1200 cos 68 dt
x=1200 cos 68 t +C
t=0, x=0, C--->0
x=1200t cos 68
let t=227 seconds (from previous part (a))
x=1200 x 227 x cos 68=102 km (nearest km)