Yes, there can be sub-intervals of length "n" with no prime numbers. however, you must prove this for all n.
And the second part is less straightforward, but still doable. The upper bound is always pi(n), because that is the maximum number of prime numbers in any sub-interval of the natural numbers of length n
?
In my previous post, I was addressing the second part of your question, not the first (I suppose I should've mentioned this). Basically, in your question you claim that if we have a subinterval of length n (has n elements), then there must exist a subinterval containing k primes for all k which exceeds 0 but is bounded by pi(x). In my previous post, I provided a counter example to this claim, showing how there exists a subinterval of length 3, but within the subinterval which I specifically mentioned (20,21,22) there is no subinterval which contains any primes. According to your question, within the subinterval (20,21,22), there should exist a subinterval which contains 1 prime and also another subinterval which contains 2 primes. Obviously, that's not true in this example.
Also, the first part of your question doesn't quite make sense either. For instance, the elements 2 and 3 form a subinterval of length 2, and clearly any subinterval within this subinterval must contain a prime. Thus your claim is false.
So this is why I'm asking for a clarification, as the question in its current wording isn't true.