Hey guys, one more request, please. Does anyone have a proper sample answer for this:
View attachment 27551
Technology plays a crucial rule in developing new models and ideas of matter, especially in the frontier of particle physics - the Standard Model.
Particle accelerators such as the one at SLAC (Stanford linear accelerator centre) use linear accelerators to accelerate protons through a series of drift tubes 3 km long in total, where the gaps between each electrode serve to provide a 'kick' by exposing them to electric fields and accelerating them. The accelerating potential, which is alternating has to be kept in step with the particles, hence the tubes are lengthened.
Cyclotron (which have now been phased out), accelerate particles as they pass through the gaps between the two 'dees' giving them a kick and increasing their radii, speed and energy. A high frequency AC voltage is used to change the polarity of the dees every half rotation as the particles re-enter the gap to provide a uni-directional acceleration. When the particle reaches the limit of the magnetic field, deflector plates are used to fire them. There are many disadvantages to using cyclotrons however, as very high energy particles cannot be produced from it due to the limitations in size and energy requirements due to mass dilation results in the alternating potential to become out of step with the accelerating charges.
Synchrotrons keep particles in a constant radius, and as the particles get more energetic, a stronger magnetic field is used to maintain the same radius. Synchrotrons, such as the LHC use large superconducting magnets which cover 85% of the circumference and are 15 metres long, cooled by liquid helium to provide the magnetic field; as they do not heat up and can be used for long periods of time. The particles pass through a large diameter ring (as large as 6.28 km in FermiLab) where regions are exposed with radio frequencies to provide an electric field to accelerate the particles, these frequencies increase as particle energy increase. Colliders in FermiLab can acceleratre protons up to 200 GeV. Synchrotrons are the most favoured particle accelerators due to their few limitations, with the main one being the inability to fire more than one batch of particles at a time, however, this is just a minor issue in comparison to the capabilities it offers.
Particle accelerators, such as the state-of-the-art LHC, can accelerate protons to up to 7 TeV, these allow new discoveries to be made, as by colliding these particles at extremely high speeds we can observe their fragmentation and decomposition into newer fundamental particles, as such with the discovery of the Higgs Boson in 2012, which validated the Standard Model of matter by confirming Peter Higgs's hypothesis in the 1960's about the existence of a fundamental field that provides mass to particles. These discoveries have also been facilitated by the use of state-of-the-art detectors such as multicomponent detectors and calorimeters in the LHC at CERN, FermiLab and Brookhaven to record the trajectory, energy and momentum of particles formed, allowing further analysis of intrinsic details on new subatomic particles. These tracking chambers are contained within cylindrical shells as these collisions result in the distribution of the fragmentation in all directions radially, hence a wide surface area is required for accurate and precise detection.
Thus, the development of technology has vastly escalated our understanding of the standard model of matter, leading to revolutionary discoveries such as the Higgs Boson.