Mountain.Dew
Magician, and Lawyer.
okay, lemme finish this off...
aim: differentiate f(x) = 2x^2 + 3x + 3 by first principles.
f'(x) = lim h-> 0 [[ f(x+h) - f(x) ] / h ]...merely state formula
f'(x) = lim h-> 0 [[2(x+h)^2 + 3(x+h) + 3 - 2x^2 + 3x + 3] / h]...substitute values
f'(x) = lim h-> 0 [[2x^2 + 4xh + 2h^2 + 3x + 3h + 3 - 2x^2 + 3x + 3] / h]...expand
f'(x) = lim h-> 0 [[4xh + 2h^2 + 3h] / h]...cancel and collect like terms
f'(x) = lim h-> 0[4x + 2h + 3]...divide by h, then use the limit.
so therefore, f'(x) = 4x + 3
so thats my 2 cents.
aim: differentiate f(x) = 2x^2 + 3x + 3 by first principles.
f'(x) = lim h-> 0 [[ f(x+h) - f(x) ] / h ]...merely state formula
f'(x) = lim h-> 0 [[2(x+h)^2 + 3(x+h) + 3 - 2x^2 + 3x + 3] / h]...substitute values
f'(x) = lim h-> 0 [[2x^2 + 4xh + 2h^2 + 3x + 3h + 3 - 2x^2 + 3x + 3] / h]...expand
f'(x) = lim h-> 0 [[4xh + 2h^2 + 3h] / h]...cancel and collect like terms
f'(x) = lim h-> 0[4x + 2h + 3]...divide by h, then use the limit.
so therefore, f'(x) = 4x + 3
so thats my 2 cents.