Hi can someone help me solve the attached question
Attachments
-
97.7 KB Views: 26
I got a similar approach for the first part but for the second i use am-gm: a^2 +b^ >= 2abu.v/|u||v| = v.w/|w||v| = u.w/|u||w| = ½
w = (a, 0, c)
v = (0, b, c)
u = (a, b, 0)
using these and the first line, we get:
b^2/sqrt(a^2+b^2)sqrt(b^2+c^2) = ½
b^2 = ½sqrt(a^2+b^2)sqrt(b^2+c^2)=1/2(sqrt4b^4)
c^2 = 1/2sqrt(c^2+a^2)sqrt(c^2+b^2) = ½(sqrt4c^4)
a^2 = 1/2sqrt(a^2+b^2)sqrt(a^2+c^2)
= ½(sqrt(4a^4))
1.(a^2+b^2)(a^2+c^2) = 4a^4
2.(a^2+c^2)(b^2+c^2) = 4c^4
3.(a^2+b^2)(b^2+c^2) = 4b^4
taking 1-2, we get A^4 +a^2b^2 + c^2b^2 + c^2a^2 – a^2b^2 – c^2b^2- c^2a^2-c^4 = 4(a^4-c^4)
A^4 – c^4 = 4(a^4-c^4)
So a = c
Then it’s easy to prove b =c
looks like it yeDoes anyone where this problem is from? Is it from a math textbook?
Thanks heapsu.v/|u||v| = v.w/|w||v| = u.w/|u||w| = ½
w = (a, 0, c)
v = (0, b, c)
u = (a, b, 0)
using these and the first line, we get:
b^2/sqrt(a^2+b^2)sqrt(b^2+c^2) = ½
b^2 = ½sqrt(a^2+b^2)sqrt(b^2+c^2)=1/2(sqrt4b^4)
c^2 = 1/2sqrt(c^2+a^2)sqrt(c^2+b^2) = ½(sqrt4c^4)
a^2 = 1/2sqrt(a^2+b^2)sqrt(a^2+c^2)
= ½(sqrt(4a^4))
1.(a^2+b^2)(a^2+c^2) = 4a^4
2.(a^2+c^2)(b^2+c^2) = 4c^4
3.(a^2+b^2)(b^2+c^2) = 4b^4
taking 1-2, we get A^4 +a^2b^2 + c^2b^2 + c^2a^2 – a^2b^2 – c^2b^2- c^2a^2-c^4 = 4(a^4-c^4)
A^4 – c^4 = 4(a^4-c^4)
So a = c
Then it’s easy to prove b =c
Thanks heapsMy solution
Can I also trouble you with this questionThanks heaps