shkspeare said:
8. Prove by induction that, for all positive integers n,
2 + (2 + 2<sup>2</sup>) + (2 + 2<sup>2</sup> + 2<sup>3</sup>) + ... + (2 + 2<sup>2</sup> + 2<sup>3</sup> + ... + 2<sup>n</sup>) = 2<sup>n+2</sup> - 2(n + 2)
Hmm I have an answer that looks dodgy, ie I use another induction to prove this induction inside it.
Humbug, I just figured out the geometrical series way, hmm well here is the original answer, Ill post the geometrical series way under it soon
****Highlight to read****
<font color="#D1D1E1">
A) Prove true for n=1
LHS=2
RHS=2<sup>3</sup>-6
=8-6
=2=LHS
∴ true for n=1
B) Assume true for n=k
2 + (2 + 2<sup>2</sup>) + (2 + 2<sup>2</sup> + 2<sup>3</sup>) + ... + (2 + 2<sup>2</sup> + 2<sup>3</sup> + ... + 2<sup>k</sup>) = 2<sup>k+2</sup> - 2(k + 2)
C) Prove true for n=k+1
Ie trying to prove
2 + (2 + 2<sup>2</sup>) + (2 + 2<sup>2</sup> + 2<sup>3</sup>) + ... + (2 + 2<sup>2</sup> + 2<sup>3</sup> + ... + 2<sup>k</sup>)+(2 + 2<sup>2</sup> + 2<sup>3</sup> + ... + 2<sup>k</sup>)+2<sup>k+1</sup>) = 2<sup>k+3</sup> - 2(k + 3)
Now 2 + (2 + 2<sup>2</sup>) + (2 + 2<sup>2</sup> + 2<sup>3</sup>) + ... + (2 + 2<sup>2</sup> + 2<sup>3</sup> + ... + 2<sup>k</sup>) = 2<sup>k+2</sup> - 2(k + 2) ∴ it is true if
(2 + 2<sup>2</sup> + 2<sup>3</sup> + ... + 2<sup>k</sup>+2<sup>k+1</sup>) = 2<sup>k+3</sup> - 2(k + 3)-[2<sup>k+2</sup> - 2(k + 2)]
=2<sup>k+3</sup>-2k-6-2<sup>k+2</sup>+2k+4
=2*2<sup>k+2</sup>-2<sup>k+2</sup>-2
=2<sup>k+2</sup>-2
Dividing both sides by 2 to make it look neater
2<sup>0</sup>+2<sup>1</sup>+2<sup>2</sup>+....+2<sup>k</sup>=2<sup>k+1</sup>-1
∴ it is true if the above is true
A<sub>2</sub>)Prove true for k=1
LHS=1+2
=3
RHS=2<sup>2</sup>-1
=3=LHS ∴ true for k=1
B<sub>2</sub>) Assume true for k=j
2<sup>0</sup>+2<sup>1</sup>+2<sup>2</sup>+....+2<sup>j</sup>=2<sup>j+1</sup>-1
C<sub>2</sub>) Prove true for k=j+1
2<sup>0</sup>+2<sup>1</sup>+2<sup>2</sup>+....+2<sup>j</sup>+2<sup>j+1</sup>=2<sup>j+1</sup>-1+2<sup>j+1</sup>
RHS=2*2<sup>j+1</sup>-1
=2<sup>j+2</sup>-1
∴ true for k=j+1, ∴ true for k=1, 2, 3,... and for all positive integers.
As 2<sup>0</sup>+2<sup>1</sup>+2<sup>2</sup>+....+2<sup>k</sup>=2<sup>k+1</sup>-1 is true for all positive integers, 2 + (2 + 2<sup>2</sup>) + (2 + 2<sup>2</sup> + 2<sup>3</sup>) + ... + (2 + 2<sup>2</sup> + 2<sup>3</sup> + ... + 2<sup>n</sup>) = 2<sup>n+2</sup> - 2(n + 2) is true for n=1, 2, 3 and for all n>0
</font>
********Geometrical applications way (2nd time Ive posted this, stupid error) *******<font color="#D1D1E1">
A) and B) are the same
C)
2 + (2 + 2<sup>2</sup>) + (2 + 2<sup>2</sup> + 2<sup>3</sup>) + ... + (2 + 2<sup>2</sup> + 2<sup>3</sup> + ... + 2<sup>k</sup>)+(2 + 2<sup>2</sup> + 2<sup>3</sup> + ... + 2<sup>k</sup>)+2<sup>k+1</sup>) =
2(2<sup>1</sup>-1)+2(2<sup>2</sup>-1)+2(2<sup>3</sup>-1)+.......+2(2<sup>k</sup>-1)+2(2<sup>k+1</sup>-1) [Each one is a geometric series, (r-1)=1]
=2(2+2<sup>2</sup>+2<sup>3</sup>+....+2<sup>k</sup>+2<sup>k+1</sup>-(k+1)) [yay another geometric series, and we had k+1 ones]
=2(2(2<sup>k+1</sup>-1)-(k+1))
=2(2<sup>k+2</sup>-k-1-2)
=2(2<sup>k+2</sup>-(k+3))
=2<sup>k+3</sup>-2(k+3)
∴ true for n=k+1 and since true for n=1, true for n=2,3,4,5.... and for all n>0 </font>