You haven't specified domains, so I've just left each at the final step.
The key to both is to factorise.
Question 1
rt6cosA + rt2sinA + rt3cotA + 1=0
Factorising:
rt3cosA(rt2+1/sinA)+sinA(rt2+1/sinA)=0
(rt2+1/sinA)(rt3cosA+sinA)=0
(rt2+1/sinA)=0
sinA= -1/rt2
(rt3cosA+sinA)=0
2cos(A-30deg)=0
Question 2
20cotA + 15cotAcosecA - 4cosecA= 3(1+cot^2A)
20cotA + 15cotAcosecA - 4cosecA - 3 - 3cot^2A = 0
20cotA + 15cotAcosecA - 4cosecA - (3cosec^2A - 3cot^2A)
- 3cot^2A = 0
20cotA + 15cotAcosecA - 4cosecA - 3cosec^2A = 0
5cotA(4 + 3 cosecA) - cosecA(4 + 3cosecA) = 0
(4 + 3cosecA)(5cotA - cosecA) = 0
3cosecA = -4
cosecA = -4/3
sinA = -3/4
5cotA - cosecA = 0
5cosA/sinA - 1/sinA=0
cosA = 1/5