Suppose that z is a complex number with modulus 1 and argument @ (ie z = cos@ + isin@).
(a) Show that z^n - 1 = 2i * sin(n@ / 2) * [cos(n@ /2) + isin(n@ / 2)], for n a positive integer.
(b) Hence, or otherwise, show that
z + z^2 + z^3 + ... + z^n = {sin(n@ / 2) / sin(@ / 2)] * [cos[(n + 1)@ / 2] + isin[(n + 1)@ / 2]}
(c) Hence, find an expression for cos@ + cos(2@) + cos(3@) + ... cos(n@)
(d) Prove that |cos@ + cos(2@) + cos(3@) + ... cos(n@)| <= |cosec(@ / 2)|
(a) Show that z^n - 1 = 2i * sin(n@ / 2) * [cos(n@ /2) + isin(n@ / 2)], for n a positive integer.
(b) Hence, or otherwise, show that
z + z^2 + z^3 + ... + z^n = {sin(n@ / 2) / sin(@ / 2)] * [cos[(n + 1)@ / 2] + isin[(n + 1)@ / 2]}
(c) Hence, find an expression for cos@ + cos(2@) + cos(3@) + ... cos(n@)
(d) Prove that |cos@ + cos(2@) + cos(3@) + ... cos(n@)| <= |cosec(@ / 2)|