For the first question you didnt write it properly, lucky i remember it being from the cambridge book:
Note: See the image attached
View attachment 13802
Show z
12 z
22 = z
1 z
2
Let arg(z
1) = a, arg(z
2) = b
From diagram b = a + (π/3)
LHS = |z
1|
2 cis2a + |z
2|
2 cis2b
= |z
1|
2 cis(2a) + |z
1|
2 cis2b
= |z
1|
2( cis(2a) + cis(2b))
= |z
1|
2( cis(2a) + cis(2π/3 + 2a))
= |z
1|
2( cos(2a) + isin(2a) + cos(2π/3 + 2a) + isin(2π/3 + 2a))
= |z
1|
2( cos(2a) + isin(2a) + cos(2π/3)cos(2a) - sin(2π/3)sin(2a) + i[sin(2π/3)cos(2a) + cos(2π/3)sin(2a)])
= |z
1|
2( cos(2a) + isin(2a) + (-1/2)cos(2a) - (√3/2)sin(2a) + i[(√3/2)cos(2a) + (-1/2)sin(2a)])
= |z
1|
2((1/2)cos(2a) + (1/2)isin(2a) + - (√3/2)sin(2a) + (√3/2)icos(2a))
= |z
1|
2((1/2)cos(2a) - (√3/2)sin(2a) + i[(1/2)sin(2a) + (√3/2)cos(2a)])
= |z
1|
2(cos(π/3)cos(2a) - sin(π/3)sin(2a) + i[cos(π/3)sin(2a) + sin(π/3)cos(2a)])
= |z
1|
2(cos(π/3+2a) + isin(π/3+2a))
= |z
1||z
2|(cos(π/3+a+a) + isin(π/3+a+a))
= |z
1||z
2|(cos(a+b) + isin(a+b))
= |z
1||z
2|cis(a+b)
= z
1z
2
=RHS
therefore z
12 z
22 = z
1 z
2
---------------------
I dunno if i did question two correctly, but this is what i did anyway..
View attachment 13803