(z+1)^4 + 16 = 0
(z+1)^4 = -16
(z+1)^4 = 16 cis(pi+2npi), n integer
(z+1) = 16^(1/4) cis[1/4(pi+2npi)]
= 2 cis[1/4(pi+2npi)]
then put n=0,1,2,3 to get 4 roots in total
(1-i)z - 2i = 2
(1-i)z = 2(1+i)
z=2(1+i)/(1-i)
z=2(1+i)/(1-i) * (1+i)/(1+i)
(z-1)^3 + 8(z+i)^3=0
[(z-1)/(z+i)]^3 = -8 = 8cis(pi/2+2npi)
(z-1)/(z+i) = a, b, c (3 things)
say for a, (z-1)/(z+i) = a
(z-1) = a(z+i) => z(1-a)=ai+1 etc
(2+5w+2w2)6 = 729
2+5w+2w2
= 2w3+5w+2w2
= 2w3 + 2w + 2w2 + 3w
= 2(w3+w+w2)+3w
= 0+3w (sum of roots of unity = 0)
then (2+5w+2w2)6 = (3w)6 = 729w6 = 729(w3)2 = 729(1)^2