MedVision ad

Conics q..HELP! (1 Viewer)

DcM

Member
Joined
Sep 1, 2003
Messages
53
Gender
Female
HSC
2004
I need help wif the following conics questions:

1) The point P (a sec#, b tan#) lies one the hyperbola (x^2/a^2) - (y^2/b^2) = 1. Let d1 and d2 be the distances from P to each of the hyperbola's asymptotes. Show d1.d2 = (a^2.b^2)/(a^2 + b^2)


2) The points A (a, 0), A' (-a, 0) and P (a sin#, b cos#) are on the hyperbola (x^2/a^2) - (y^2/b^2) = 1 where a>0. AP and A'P interesect the asymptote ay = bx at Q and R respectively. Show that QR = ae.

Thanks alot!
DcM
 

CM_Tutor

Moderator
Moderator
Joined
Mar 11, 2004
Messages
2,642
Gender
Male
HSC
N/A
Originally posted by DcM
The point P (a sec#, b tan#) lies one the hyperbola (x^2/a^2) - (y^2/b^2) = 1. Let d1 and d2 be the distances from P to each of the hyperbola's asymptotes. Show d1.d2 = (a^2.b^2)/(a^2 + b^2)
The distances d<sub>1</sub> and d<sub>2</sub> are perpendicular distances, and thus should be found using the perpendicular distance formula.

Take d<sub>1</sub> as the distance from p to y = bx / a (ie. bx - ay = 0).
So, d<sub>1</sub> = |b(asec#) - a(btan#)| / sqrt[(b)<sup>2</sup> + (-a)<sup>2</sup>] = ab|sec# - tan#| / sqrt(a<sup>2</sup> + b<sup>2</sup>)

Similarly, take d<sub>2</sub> as the distance from p to y = -bx / a (ie. bx + ay = 0).
So, d<sub>2</sub> = |b(asec#) + a(btan#)| / sqrt[(b)<sup>2</sup> + (a)<sup>2</sup>] = ab|sec# + tan#| / sqrt(a<sup>2</sup> + b<sup>2</sup>)

Thus, d<sub>1</sub> * d<sub>2</sub> = [ab|sec# - tan#| / sqrt(a<sup>2</sup> + b<sup>2</sup>)] * [ab|sec# + tan#| / sqrt(a<sup>2</sup> + b<sup>2</sup>)]
= (ab)<sup>2</sup>|(sec# - tan#)(sec# + tan#)| / [sqrt(a<sup>2</sup> + b<sup>2</sup>)]<sup>2</sup>
= a<sup>2</sup>b<sup>2</sup>|sec<sup>2</sup># - tan<sup>2</sup>#| / (a<sup>2</sup> + b<sup>2</sup>)
= a<sup>2</sup>b<sup>2</sup>|1| / (a<sup>2</sup> + b<sup>2</sup>)
= a<sup>2</sup>b<sup>2</sup> / (a<sup>2</sup> + b<sup>2</sup>), as required.
 

CM_Tutor

Moderator
Moderator
Joined
Mar 11, 2004
Messages
2,642
Gender
Male
HSC
N/A
Just bringing this back to the top, as Q2 has not yet been answered.

(And, if anyone is wondering, no I haven't spotted any useful geometric short cut...)
 

CM_Tutor

Moderator
Moderator
Joined
Mar 11, 2004
Messages
2,642
Gender
Male
HSC
N/A
Originally posted by DcM
2) The points A (a, 0), A' (-a, 0) and P (a sin#, b cos#) are on the hyperbola (x^2/a^2) - (y^2/b^2) = 1 where a>0. AP and A'P interesect the asymptote ay = bx at Q and R respectively. Show that QR = ae.
We are talking about a hyperbola, so this question should read that P is (asec@, btan@).

To start, we need AP: m<sub>AP</sub> = (btan@ - 0)(asec@ - a) = btan@ / a(sec@ - 1)
And, since A(a, 0) lies on AP, its equation is y = b(x - a)tan@ / a(sec@ - 1). The line meets the asymptote ay = bx when: bx / a = b(x - a)tan@ / a(sec@ - 1)
x[1 - tan@ / (sec@ - 1)] = -atan@ / (sec@ - 1)
x = [-atan@ / (sec@ - 1)] * [(sec@ - 1) / (sec@ - 1 - tan@)] = atan@ / (1 + tan@ - sec@)
So, x = asin@ / (sin@ + cos@ - 1)
Since this intersection (at Q) lies on y = bx / a, we easily find that Q is
(asin@ / (sin@ + cos@ - 1), bsin@ / (sin@ + cos@ - 1))

Next, we need R. The equation of A'P is y = b(x + a)tan@ / a(sec@ + 1). The line meets the asymptote ay = bx when: bx / a = b(x + a)tan@ / a(sec@ + 1)
x[1 - tan@ / (sec@ + 1)] = atan@ / (sec@ + 1)
x = [atan@ / (sec@ + 1)] * [(sec@ + 1) / (sec@ + 1 - tan@)] = atan@ / (sec@ + 1 - tan@)
So, x = asin@ / (1 + cos@ - sin@)
Since this intersection (at R) lies on y = bx / a, we easily find that R is
(asin@ / (1 + cos@ - sin@), bsin@ / (1 + cos@ - sin@))

Now, using the distance formula, QR<sup>2</sup> = (x<sub>Q</sub> - x<sub>R</sub>)<sup>2</sup> + (y<sub>Q</sub> - y<sub>R</sub>)<sup>2</sup>
= {[asin@ / (sin@ + cos@ - 1) - asin@ / (1 + cos@ - sin@)]<sup>2</sup> + [bsin@ / (sin@ + cos@ - 1) - bsin@ / (1 + cos@ - sin@)]<sup>2</sup>}
= (a<sup>2</sup> + b<sup>2</sup>)[f(@)]<sup>2</sup> _____(*), where f(@) = [sin@ / (sin@ + cos@ - 1)] - [sin@ / (1 + cos@ - sin@)]

Now, f(@) = [sin@ / (sin@ + cos@ - 1)] - [sin@ / (1 + cos@ - sin@)]
= sin@[(1 + cos@ - sin@) - (sin@ + cos@ - 1)] / [(1 + cos@ - sin@) * (sin@ + cos@ - 1)]
= 2sin@(1 - sin@) / [(cos@)<sup>2</sup> - (1 - sin@)<sup>2</sup>]
= 2sin@(1 - sin@) / [cos<sup>2</sup>@ - 1 + 2sin@ - sin<sup>2</sup>@]
= 2sin@(1 - sin@) / [cos<sup>2</sup>@ - sin<sup>2</sup>@ - cos<sup>2</sup>@ + 2sin@ - sin<sup>2</sup>@], using sin<sup>2</sup>@ + cos<sup>2</sup>@ = 1
= 2sin@(1 - sin@) / (2sin@ - 2sin<sup>2</sup>@)
= 1

So, using (*), QR<sup>2</sup> = (a<sup>2</sup> + b<sup>2</sup>) * (1)<sup>2</sup> = a<sup>2</sup> + b<sup>2</sup>
= a<sup>2</sup> + a<sup>2</sup>(e<sup>2</sup> - 1), noting that b<sup>2</sup> = a<sup>2</sup>(e<sup>2</sup> - 1) for a hyperbola
= a<sup>2</sup>e<sup>2</sup>

So, QR = ae, as QR > 0, as required.
 
Last edited:

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top