Originally posted by DcM
2) The points A (a, 0), A' (-a, 0) and P (a sin#, b cos#) are on the hyperbola (x^2/a^2) - (y^2/b^2) = 1 where a>0. AP and A'P interesect the asymptote ay = bx at Q and R respectively. Show that QR = ae.
We are talking about a hyperbola, so this question should read that P is (asec@, btan@).
To start, we need AP: m<sub>AP</sub> = (btan@ - 0)(asec@ - a) = btan@ / a(sec@ - 1)
And, since A(a, 0) lies on AP, its equation is y = b(x - a)tan@ / a(sec@ - 1). The line meets the asymptote ay = bx when: bx / a = b(x - a)tan@ / a(sec@ - 1)
x[1 - tan@ / (sec@ - 1)] = -atan@ / (sec@ - 1)
x = [-atan@ / (sec@ - 1)] * [(sec@ - 1) / (sec@ - 1 - tan@)] = atan@ / (1 + tan@ - sec@)
So, x = asin@ / (sin@ + cos@ - 1)
Since this intersection (at Q) lies on y = bx / a, we easily find that Q is
(asin@ / (sin@ + cos@ - 1), bsin@ / (sin@ + cos@ - 1))
Next, we need R. The equation of A'P is y = b(x + a)tan@ / a(sec@ + 1). The line meets the asymptote ay = bx when: bx / a = b(x + a)tan@ / a(sec@ + 1)
x[1 - tan@ / (sec@ + 1)] = atan@ / (sec@ + 1)
x = [atan@ / (sec@ + 1)] * [(sec@ + 1) / (sec@ + 1 - tan@)] = atan@ / (sec@ + 1 - tan@)
So, x = asin@ / (1 + cos@ - sin@)
Since this intersection (at R) lies on y = bx / a, we easily find that R is
(asin@ / (1 + cos@ - sin@), bsin@ / (1 + cos@ - sin@))
Now, using the distance formula, QR<sup>2</sup> = (x<sub>Q</sub> - x<sub>R</sub>)<sup>2</sup> + (y<sub>Q</sub> - y<sub>R</sub>)<sup>2</sup>
= {[asin@ / (sin@ + cos@ - 1) - asin@ / (1 + cos@ - sin@)]<sup>2</sup> + [bsin@ / (sin@ + cos@ - 1) - bsin@ / (1 + cos@ - sin@)]<sup>2</sup>}
= (a<sup>2</sup> + b<sup>2</sup>)[f(@)]<sup>2</sup> _____(*), where f(@) = [sin@ / (sin@ + cos@ - 1)] - [sin@ / (1 + cos@ - sin@)]
Now, f(@) = [sin@ / (sin@ + cos@ - 1)] - [sin@ / (1 + cos@ - sin@)]
= sin@[(1 + cos@ - sin@) - (sin@ + cos@ - 1)] / [(1 + cos@ - sin@) * (sin@ + cos@ - 1)]
= 2sin@(1 - sin@) / [(cos@)<sup>2</sup> - (1 - sin@)<sup>2</sup>]
= 2sin@(1 - sin@) / [cos<sup>2</sup>@ - 1 + 2sin@ - sin<sup>2</sup>@]
= 2sin@(1 - sin@) / [cos<sup>2</sup>@ - sin<sup>2</sup>@ - cos<sup>2</sup>@ + 2sin@ - sin<sup>2</sup>@], using sin<sup>2</sup>@ + cos<sup>2</sup>@ = 1
= 2sin@(1 - sin@) / (2sin@ - 2sin<sup>2</sup>@)
= 1
So, using (*), QR<sup>2</sup> = (a<sup>2</sup> + b<sup>2</sup>) * (1)<sup>2</sup> = a<sup>2</sup> + b<sup>2</sup>
= a<sup>2</sup> + a<sup>2</sup>(e<sup>2</sup> - 1), noting that b<sup>2</sup> = a<sup>2</sup>(e<sup>2</sup> - 1) for a hyperbola
= a<sup>2</sup>e<sup>2</sup>
So, QR = ae, as QR > 0, as required.