Try integration by parts:
∫ sin(log<sub>e</sub>x) dx = ∫ Sin(lnx).1 dx = ∫ uv' dx = uv - ∫ u'v
let v' = 1, v =x ------> u=sin(lnx) , u' = cos(lnx)/x
∫ sin(log<sub>e</sub>x) dx
= xsin(lnx) - ∫ cos(lnx).x/x dx (apply the same method of int. by parts to ∫ cos(lnx) dx)
= xsin(lnx) - ( xcos(lnx) + ∫ sin(lnx).x/x dx)
hence
∫ sin(log<sub>e</sub>x) dx = xsin(lnx) - xcos(lnx) - ∫ sin(log<sub>e</sub>x) dx
2∫ sin(log<sub>e</sub>x) dx = xsin(lnx) - xcos(lnx)
∫ sin(log<sub>e</sub>x) dx = x/2.sin(log<sub>e</sub>x) - x/2.cos(log<sub>e</sub>x) + C