re: HSC Chemistry Marathon Archive
Edit: Adding to the above.
Trend one:
Bp rises with increasing molecular mass. The MM is increasing due to increasing Carbon chain length. In turn, the BP rises because of ^ dispersion forces- temporarily induced polarity within the non-poplar molecules. This increased length --> increasing dispersion forces and thus more energy needed to break the intermolecular forces.
Trend 2:
Alkanoic acids have a higher BP than alkanols, which also have higher BPs than corresponding alkanes; alkanes having only dispersion forces involved is an attributable factor to this.
The other series have dispersion forces and dipole-dipole interactions. The dipole-dipole (2nd strongest intermolecular force) are greater in alkanoic acids than in alkanols, accounting for the greater BPs of this series.
In alkanoic acids and alkanols there Hydrogen bonding, the strongest of the intermolecular forces, holds the covalently bonded moleucles in structure more tightly than due to the strong force- making the intermolualar forces (all 3 involved, esp. H bonding) to be broken; this accounting for the significantly higher BPs of these two series.
The Hydrogen bonding is more marked in alkanoic acids because of the two O atoms and hence the 2 lone pairs of electrons present in the -COOH group in comparison to only the 1 O atom w/ 1 lone pair of electrons in the -OH alkanol group. The Hydrogen bonding is the strongest acting in the Alkanoic acid molecules thus the series has the highest BPs of the 3 shown in the graph.
Your explanation involving electrons is kinda weird..
Also seems like so much for a 4 marker lol. I'll try write a plan for how i would tackle this question:
- Explain why BP of alkanoic acids > alkanols > alkanes even though their similar MW
-> alkanoic acids have 2 polar groups
--> OH hydroxyl group (O highly electronegative inducing partial charges) & C=O bond slightly polar also due to O's electronegativity)
-> extensive hydrogen bonding & dipole dipole interactions
-> alkanol has 1 polar group (OH group)
-> less extensive hydrogen bonding
-> alkanes are non-polar, thus main IMF is dispersion forces which are much weaker than hydrogen bonds & dipole dip
-> BP proportional to strength/degree of IMF therefore BP of alkanoic acids > alkanols > alkanes when comparing ones of similar MW
- Explain why BP increases as molecular weight increases
-> dispersion forces is proportional to molecular weight
-> as molecular weight increases, dispersion forces between molecules increases
-> therefore IMF increases, and so all the BPs increase
I thought your answer seemed pretty long but turns out mine is probably equal in length haha.... but that's how I would do it.