what year / where is this question from so i can check my answer before I post how i did it.Need help for all questions on this picture guys.
2008 lol.what year / where is this question from so i can check my answer before I post how i did it.
Because magnesium oxide can neutralise the hydrochloric acid (producing a salt and water), in effect it serves as a base in this regard.Question: Use these equations to account for magnesium oxide's classification as an amphoteric oxide.
Some solid MATH there. lol. Should be 1.60 V.So weird seeing a galvanic cell after so many electrolytic cells recently....
a) The anode is the Ni||Ni2+ electrode, the cathode is the Pt||Cl-||Cl2 electrode. Electrons flow from the andoe to the cathode as always, so the arrow goes to the right
b) Ni(s) <--> Ni2+ + 2e-; Cl2(g) + 2e- <--> 2Cl-
So the overall equation must be Ni(s) + Cl2(g) --> Ni2+ + 2 Cl-
c) Standard cell potential = 1.36V + 0.24V = 1.50V
d) Chlorine gas concentrations decrease, thus the pipe connected to the source of Cl2 will appear less yellow in colour.
Because nickel (II) nitrate is pale green, as mentioned in the diagram, and we are increasing concentration of Ni2+, the anolyte will appear darker green.
(My brain is switched off so apologies if my answers happen to be in reverse or anything)
Not sure why the pipe will be changing colour. Also we aren't told that Chlorine gas is yellow, so im not sure if we could assume that.So weird seeing a galvanic cell after so many electrolytic cells recently....
a) The anode is the Ni||Ni2+ electrode, the cathode is the Pt||Cl-||Cl2 electrode. Electrons flow from the andoe to the cathode as always, so the arrow goes to the right
b) Ni(s) <--> Ni2+ + 2e-; Cl2(g) + 2e- <--> 2Cl-
So the overall equation must be Ni(s) + Cl2(g) --> Ni2+ + 2 Cl-
c) Standard cell potential = 1.36V + 0.24V = 1.50V
d) Chlorine gas concentrations decrease, thus the pipe connected to the source of Cl2 will appear less yellow in colour.
Because nickel (II) nitrate is pale green, as mentioned in the diagram, and we are increasing concentration of Ni2+, the anolyte will appear darker green.
(My brain is switched off so apologies if my answers happen to be in reverse or anything)
Yeh, I would have only talked about the Nickel turning into Ni2+ making the nickel half cell more green colour.Not sure why the pipe will be changing colour. Also we aren't told that Chlorine gas is yellow, so im not sure if we could assume that.
What do you mean by this? Where did I mention Al2O3 on the page or in my post?Because magnesium oxide can neutralise the hydrochloric acid (producing a salt and water), in effect it serves as a base in this regard.
Magnesium oxide dissolves to form a base in water, which means it is considered a basic oxide in this regard.
So your question confuses me. In fact... Read the third line you highlighted. You just said that MgO acts as a base, which evidently it does. If anything I'm pretty sure the amphoteric oxide is Al2O3
Depends on what definition of volume you are referring to. When you talk about the volume-pressure relationship, volume refers to the amount of gas in the container. However when you talk about the volume-concentration relationship, volume refers to the amount of liquid present in the sample. So assuming that mass of a particular substance, that is in solution, is constant then concentration is inversely proportional to volume.What's the relationship between concentration and volume? For example a decrease in volume cause an increase in pressure, how about conc. and volume?
I read somewhere that a decrease in volume say on a reaction vessel, causes an increase in concentration of the reactants/products (it's something like that I'm not sure if it's the other way around), do you know what I'm trying to say?Depends on what definition of volume you are referring to. When you talk about the volume-pressure relationship, volume refers to the amount of gas in the container. However when you talk about the volume-concentration relationship, volume refers to the amount of liquid present in the sample. So assuming that mass of a particular substance, that is in solution, is constant then concentration is inversely proportional to volume.
That's what I said. concentration is proportional to 1/volume. Meaning that an increase in volume results in a decrease in concentration and vice versa.I read somewhere that a decrease in volume say on a reaction vessel, causes an increase in concentration of the reactants/products (it's something like that I'm not sure if it's the other way around), do you know what I'm trying to say?
Anyone wanna take a shot at this question too?Q: Previous theories of acids and bases could not explain why certain substances could be classified as them.
(i) Despite this, Arrhenius' theory was arguably a big step in understanding how acids and bases work. What did Arrhenius refer to as acids and bases, and what were some of the consequences of his theory? Include relevant equations where appropriate. (4)
(ii) Currently, Bronsted-Lowry theory is commonly accepted to explain acids and bases. Explain the principles of this theory and why it can be considered more valid than Arrhenius' theory.
Alkanes and their corresponding alkenes have similar physical properties because they both have similar dispersion forces and intermolecular forces. Therefore this results in both having very similar physical properties as physical properties are dictated by the forces in the molecule. On the other hand, they have different chemical properties dues to the difference in bonding. Alkenes have a double bond which makes them significantly more reactive than alkanes with only single bonds.Explain why alkanes and their corresponding alkenese have similar physical properties, but very different chemical properties. (3 marks)