RealiseNothing
what is that?It is Cowpea
Re: HSC 2013 4U Marathon
Dividing by
gives:
![](https://latex.codecogs.com/png.latex?\bg_white x^2 + ax + b + \frac{a}{x} + \frac{1}{x^2} = 0)
Grouping appropriate terms:
![](https://latex.codecogs.com/png.latex?\bg_white x^2 + \frac{1}{x^2} + 2 + ax + \frac{a}{x} + (b-2) = 0)
![](https://latex.codecogs.com/png.latex?\bg_white (x+\frac{1}{x})^2 + a(x+\frac{1}{x}) + (b-2) = 0)
Now using the quadratic formula:
![](https://latex.codecogs.com/png.latex?\bg_white x + \frac{1}{x} = \frac{-a \pm \sqrt{a^2 - 4b + 8}}{2})
Now let![](https://latex.codecogs.com/png.latex?\bg_white x+\frac{1}{x} = U)
We want to find the values of U such that it has atleast one real root:
![](https://latex.codecogs.com/png.latex?\bg_white x^2 - Ux + 1 = 0)
![](https://latex.codecogs.com/png.latex?\bg_white U^2 - 4 \geq 0)
![](https://latex.codecogs.com/png.latex?\bg_white U \geq |2|)
So![](https://latex.codecogs.com/png.latex?\bg_white x+\frac{1}{x} \geq |2|)
Therefore going back to our quadratic equation and the roots:
![](https://latex.codecogs.com/png.latex?\bg_white \frac{-a \pm \sqrt{a^2 - 4b + 8}}{2} \geq |2|)
![](https://latex.codecogs.com/png.latex?\bg_white -a \pm \sqrt{a^2 - 4b + 8} \geq |4|)
This is where I got up to last time, I'll try again though:bump.
Difficulty: 3.14159/5
That should be enough to keep 2013'ers busy for a while.
Dividing by
Grouping appropriate terms:
Now using the quadratic formula:
Now let
We want to find the values of U such that it has atleast one real root:
So
Therefore going back to our quadratic equation and the roots: