Sy123
This too shall pass
- Joined
- Nov 6, 2011
- Messages
- 3,725
- Gender
- Male
- HSC
- 2013
Re: HSC 2013 4U Marathon
![](https://latex.codecogs.com/png.latex?\bg_white $Without loss of generality, take$ \ \ a>b>c )
![](https://latex.codecogs.com/png.latex?\bg_white a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = )
![](https://latex.codecogs.com/png.latex?\bg_white (a-b)(a-c)(b-c) \left(\frac{a}{b-c} - \frac{b}{a-c} + \frac{c}{a-b} \right) )
![](https://latex.codecogs.com/png.latex?\bg_white $The multiplier at the front is positive due to the initial condition$ )
![](https://latex.codecogs.com/png.latex?\bg_white a > b )
![](https://latex.codecogs.com/png.latex?\bg_white a-c > b-c )
![](https://latex.codecogs.com/png.latex?\bg_white \therefore \ \frac{1}{a-c} < \frac{1}{b-c} )
![](https://latex.codecogs.com/png.latex?\bg_white \therefore \ \ \frac{b}{a-c} < \frac{a}{b-c} )
![](https://latex.codecogs.com/png.latex?\bg_white \therefore \ \frac{a}{b-c} - \frac{b}{a-c} + \frac{c}{a-b} > 0 )
![](https://latex.codecogs.com/png.latex?\bg_white \therefore \ \ (a-b)(a-c)(b-c) \left(\frac{a}{b-c} - \frac{b}{a-c} + \frac{c}{a-b} \right ) > 0 )
-----
![](https://latex.codecogs.com/png.latex?\bg_white $Case 1: For non-distinct$ \ \ a,b,c \ \ $without loss of generality take$ \ \ a=b )
![](https://latex.codecogs.com/png.latex?\bg_white a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = c(c-a)^2 > 0 )
![](https://latex.codecogs.com/png.latex?\bg_white $Case 2:$ \ \ a=b=c \ \ \Rightarrow \ \ a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = 0 )
Hence we account for all cases and inequality holds each time
First, we will prove this is true for distinct a,b,cProve that for all non-negative a,b,c
a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b) >= 0
-----
Hence we account for all cases and inequality holds each time