rand_althor
Active Member
- Joined
- May 16, 2015
- Messages
- 554
- Gender
- Male
- HSC
- 2015
Re: HSC 2015 3U Marathon
&=n\cdot f(a) \textup{ for }n\geq1\\ \textup{1. Show true for }n&=1 \\ \textup{LHS}&=f(a^1)=f(a) \\ \textup{RHS}&=1\times f(a)=f(a)=\textup{LHS} \\ \textup{Therefore, true for }n&=1. \end{align*})
&=k\cdot f(a)\end{align*})
 \\&=f(a\cdot a^k) \\&=f(a)+f(a^k) \textup{ since } f(xy)=f(x)+f(y) \\&=f(a)+k\cdot f(a) \textup{ (using the assumption)} \\&=(k+1)f(a) \\\textup{RHS}&=(k+1)f(a)=\textup{LHS} \\\textup{Therefore, true for }n&=k+1 \\\end{align*})
I'll post a solution for question 2 tomorrow.
Question 1:
I'll post a solution for question 2 tomorrow.
Last edited: