Theorem: 1<sup>3</sup> + 3<sup>3</sup> + 5<sup>3</sup> + ... + (2n - 1)<sup>3</sup> = n<sup>2</sup>(2n<sup>2</sup> - 1), for all integers n=>1
Proof: By induction on n.
A Put n = 1: LHS = 1<sup>3</sup> = 1
RHS = 1<sup>2</sup>[2(1)<sup>2</sup> - 1] = 1 * (2 - 1) = 1 = LHS
So, the result is true for n = 1.
B Let k be a value of n for which the result is true.
That is, 1<sup>3</sup> + 3<sup>3</sup> + 5<sup>3</sup> + ... + (2k - 1)<sup>3</sup> = k<sup>2</sup>(2k<sup>2</sup> - 1) ________(**)
We must now prove the result for n = k + 1.
That is, we must prove 1<sup>3</sup> + 3<sup>3</sup> + 5<sup>3</sup> + ... + (2k + 1)<sup>3</sup> = (k + 1)<sup>2</sup>[2(k + 1)<sup>2</sup> - 1]
LHS = 1<sup>3</sup> + 3<sup>3</sup> + 5<sup>3</sup> + ... + (2k + 1)<sup>3</sup>
= [1<sup>3</sup> + 3<sup>3</sup> + 5<sup>3</sup> + ... + (2k - 1)<sup>3</sup>] + (2k + 1)<sup>3</sup>
= [k<sup>2</sup>(2k<sup>2</sup> - 1)] + (2k + 1)<sup>3</sup>, using the induction hypothesis (**)
= 2k<sup>4</sup> - k<sup>2</sup> + (2k)<sup>3</sup> + 3(2k)<sup>2</sup>(1) + 3(2k)(1)<sup>2</sup> + 1<sup>3</sup>
= 2k<sup>4</sup> + 8k<sup>3</sup> + 11k<sup>2</sup> + 6k + 1
RHS = (k + 1)<sup>2</sup>[2(k + 1)<sup>2</sup> - 1]
= (k<sup>2</sup> + 2k + 1)(2k<sup>2</sup> + 4k +1)
= 2k<sup>4</sup> + 4k<sup>3</sup> + 2k<sup>2</sup> + 4k<sup>3</sup> + 8k<sup>2</sup> + 4k + k<sup>2</sup> + 2k + 1
= 2k<sup>4</sup> + 8k<sup>3</sup> + 11k<sup>2</sup> + 6k + 1
= LHS
So,
if the result is true for n = k,
then it is also true for n = k + 1.
C It follow from
A and
B by mathematical induction that the result is true for all integers n => 1.
-----
Comment: In
B, it would be better to not have to expand both sides, but rather transform LHS into RHS, but I don't see an easy way to do that off hand.