True√(p^2+q^2) + √(r^2+s^2) >= √(p^2+q^2+r^2+s^2)
for all real p, q, r, s.
True or false.
Triangle inequality√(p^2+q^2) + √(r^2+s^2) >= √(p^2+q^2+r^2+s^2)
for all real p, q, r, s.
True or false.
By Inspection.True
If we're assuming the triangle inequality as a given, just let a = p + qi, b = b = r + si
If we're assuming the triangle inequality as a given, just let a = p + qi, b = b = r + si
|a| + |b| >= |a+b| by triangle inequality
then just writing the definition of the modulus of a complex number gives the required inequality