You actually need another step to solve a "maximum" or "minimum" problem: you need to show the value is achieved. What I mean is this; you can define a maximum as follows:
"A function f has a maximum M, if for all x, f[x] <= M, and for some a, f[a] = M"
So what Spiralflex and others have shown in this problem, is that 4 <= |z| <= 6 for instance. But that is actually not enough to show that, for instance, 6 is the maximum value of |z|. Because isn't it also true that |z| <= 9, since everything that is less than or equal to 6 is also less than or equal to nine - but clearly, 9 is not the maximum! So you need the second part of the definition to actually have it make sense. Here it's sufficient, I think, to just draw a diagram and do it geometrically since that makes it clear that there are cases where equality is reached in the 4 <= |z| <= 6 bound.