i) cos2x - sin2x = cosx - sinx
therefore,
sqrt(2) * [sin(pi/4)*cos2x - sin2x*cos(pi/4)] = sqrt(2) * [sin(pi/4)*cosx + cos(pi/4)*sinx]
so
sqrt(2) * sin(pi/4 - 2x) = sqrt(2) * sin(pi/4 - x)
we can get rid of the sqrt(2) on both sides, and get:
sin(pi/4 - 2x) = sin(pi/4 - x)
we know that if sinA = sinB, then:
1. A = 2*pi*n + B
OR
2. A = 2*pi*n + (pi - B)
(for any arbitrary integer n)
taking the first set of solutions (1), we get:
pi/4 - 2x = 2*pi*n + pi/4 - x
-2x = 2*pi*n - x
x = -2*pi*n
to get x in the range 0<=x<=2*pi, we choose n=0, n=-1 and get:
x = 0, x = 2*pi
Now for the 2nd set of solutions (2), we get:
pi/4 - 2x = 2*n*pi + pi - (pi/4 - x)
pi/4 - 2x = 2*n*pi + pi - pi/4 + x
p/4 - pi + pi/4 - 2*n*pi = 3x
3x = - pi/2 - 2*n*pi
x = -pi/6 - (2/3)*n*pi
to get x in the range 0<=x<=2*pi, we choose n=-1, n=-2, n=-3 and get:
x=pi/2, x= 7*pi/6, x=11*pi/6
so the complete set of solutions for 0<=x<=2*pi are:
x=0, x=pi/2, x=7*pi/6, x=11*pi/6, x=2*pi
ii)
1*10^-1 + 2*10^-2 + 3*10^-3 + 4*10^-4 + ...
= 1*(0.1)^1 + 2*(0.1)^2 + 3*(0.1)^3 + 4*(0.1)^4
(hopefully you can see a sort of pattern happening)
= [(0.1)^1] + [(0.1)^2 + (0.1)^2] + [(0.1)^3 + (0.1)^3 + (0.1)^3] + [(0.1)^4 + (0.1)^4 + (0.1)^4 + (0.1)^4] + ...
= {(0.1)^1 + (0.1)^2 + (0.1)^3 + (0.1)^4 + .... }
+ {(0.1)^2 + (0.1)^3 + (0.1)^4 + (0.1)^5 + ....}
+ {(0.1)^3 + (0.1)^4 + (0.1)^5 + (0.1)^6 + ....}
+ ....
( You can see that the above is a sum of infinite sums. You can work out each individual infinite sum by using that formula:
S = a/{r-1} )
= (0.1^1)/(1-0.1) + 0.1^2/(1-0.1) + 0.1^2/(1-0.1) + ....
= (0.1^1)/0.9 + (0.1^2)/0.9 + (0.1^3)/0.9 + (0.1^4)/0.9 + ....
= (1/0.9) * (0.1^1 + 0.1^2 + 0.1^3 + 0.1^4 + ....)
(again an infinite sum)
= (1/0.9) * (0.1)/(1-0.1)
= (1/0.9) * (0.1/0.9)
= 10/9 * 1/9
= 10/81
it shouldn't surprise you that if you convert this answer to a decimal, you'll get a recurring decimal which is:
0.123456789....