sin(4x + 4x) = sin4xcos4x + sin4xcos4x
= 2sin4xcos4x
sin4x = sin(2x + 2x)
=2(sin2xcos2x + sin2xcos2x)(cos4x)
=2(2sin2xcos2x)(cos4x)
=4(sin2xcos2x)(cos4x)
cos4x = cos(2x + 2x)
=4(sin2xcos2x)(cos2xcos2x - sin2xsin2x)
=4(sin2xcos2x)(cos^2*2x - sin^2*2x)
=4(sin2x.cos^3*2x - sin^3*2x.cos2x)
= 4sin2xcos^3*2x-4sin^3*2xcos2x
LHS = RHS