part d ii is a probability so it can be a fraction :>for this q how on earth do u have a fraction for the number of ways
Oh yeah thanks for that didnt read properlypart d ii is a probability so it can be a fraction :>
pick 2 of the 8 points to draw a line between. Then we subtract 3C2 to get rid of collinear duplicates. but we now are missing the 1 case where we have the line between the 3 collinear points, since we just subtracted that off by getting rid of 3C2, as that's still a possibility so we need to add the 1 back on. tricky
wdym by collinear duplicates?pick 2 of the 8 points to draw a line between. Then we subtract 3C2 to get rid of collinear duplicates. but we now are missing the 1 case where we have the line between the 3 collinear points, since we just subtracted that off by getting rid of 3C2, as that's still a possibility so we need to add the 1 back on. tricky
draw out those 3 collinear points, call them A, B, C. the line between A and B, the line between B and C, the line between A and C are all the same since they lie on the same line. So we subtract these 3C2 duplicate lines (we choose 2 out of the 3 collinear points). but now we still need to include the line through A,B,C, so we add 1 to recover thiswdym by collinear duplicates?
Hmm lowkey im still kinda confuseddraw out those 3 collinear points, call them A, B, C. the line between A and B, the line between B and C, the line between A and C are all the same since they lie on the same line. So we subtract these 3C2 duplicate lines (we choose 2 out of the 3 collinear points). but now we still need to include the line through A,B,C, so we add 1 to recover this
consider the easier case when we have 3 collinear points (lets just take the points (1,1) and (2,2) and (3,3) for example, they all lie on the line y =x), and one point that isn't (we will take (4,2) which doesn't lie on y =x), giving 4points in total. we have 4C2 ways to create a straight line from any 4 points: we choose 2 out of the 4 points to draw a line between them, and repetition isn't allowed because the line from say (1,1) to (4,2) is the exact same as the line from (4,2) to (1,1) for example, so that's why we are using choose here to avoid these repeats. This gives 4C2 = 6 "naive" possible lines ignoring our collinear restrction: the line from (1,1) to (2,2), the line from (1,1) to (3,3), the line from (1,1) to (4,2), the line from (2,2) to (3,3), the line from (2,2) to (4,2), and finally the line from (3,3) to (4,2).Hmm lowkey im still kinda confused
OHHHH this makes so much more sense now tysm for the help!!consider the easier case when we have 3 collinear points (lets just take the points (1,1) and (2,2) and (3,3) for example, they all lie on the line y =x), and one point that isn't (we will take (4,2) which doesn't lie on y =x), giving 4points in total. we have 4C2 ways to create a straight line from any 4 points: we choose 2 out of the 4 points to draw a line between them, and repetition isn't allowed because the line from say (1,1) to (4,2) is the exact same as the line from (4,2) to (1,1) for example, so that's why we are using choose here to avoid these repeats. This gives 4C2 = 6 "naive" possible lines ignoring our collinear restrction: the line from (1,1) to (2,2), the line from (1,1) to (3,3), the line from (1,1) to (4,2), the line from (2,2) to (3,3), the line from (2,2) to (4,2), and finally the line from (3,3) to (4,2).
however, we can immediately see here that we have overcounted by 3 because the line from (1,1) to (2,2) is the exact same as the line from (1,1) to (3,3) which is the exact same as the line from (2,2) to (3,3). the 3 here comes from choosing 2 out of the 3 collinear points to draw a line between, so we can say that there are 3C2 ways in general, again using choose here for the same reason as above.
so if we take out these possibilities where we overcounted , we end up with 4C2-3C2 = 3 possible lines, namely the line from (1,1) to (4,2), the line from (2,2) to (4,2), and the line from (3,3) to (4,2). but now we can see that the line that the 3 collinear points lied on is missing from this list, aka the line y = x. this is still a valid possiblity, because it's still a line that connects 2 of our 4 possible points, it's just that it happened to be counted 3 times. so we need to add back on the line y = x to our possible lines.
so we now see that there are 4C2-3C2 + 1 = 4 possible lines in total, namely y =x, the line from (1,1) to (4,2), the line from (2,2) to (4,2), and the line from (3,3) to (4,2). you can then scale this up to include as many points as you want, same logic applies
For this q, is it like this?consider the easier case when we have 3 collinear points (lets just take the points (1,1) and (2,2) and (3,3) for example, they all lie on the line y =x), and one point that isn't (we will take (4,2) which doesn't lie on y =x), giving 4points in total. we have 4C2 ways to create a straight line from any 4 points: we choose 2 out of the 4 points to draw a line between them, and repetition isn't allowed because the line from say (1,1) to (4,2) is the exact same as the line from (4,2) to (1,1) for example, so that's why we are using choose here to avoid these repeats. This gives 4C2 = 6 "naive" possible lines ignoring our collinear restrction: the line from (1,1) to (2,2), the line from (1,1) to (3,3), the line from (1,1) to (4,2), the line from (2,2) to (3,3), the line from (2,2) to (4,2), and finally the line from (3,3) to (4,2).
however, we can immediately see here that we have overcounted by 3 because the line from (1,1) to (2,2) is the exact same as the line from (1,1) to (3,3) which is the exact same as the line from (2,2) to (3,3). the 3 here comes from choosing 2 out of the 3 collinear points to draw a line between, so we can say that there are 3C2 ways in general, again using choose here for the same reason as above.
so if we take out these possibilities where we overcounted , we end up with 4C2-3C2 = 3 possible lines, namely the line from (1,1) to (4,2), the line from (2,2) to (4,2), and the line from (3,3) to (4,2). but now we can see that the line that the 3 collinear points lied on is missing from this list, aka the line y = x. this is still a valid possiblity, because it's still a line that connects 2 of our 4 possible points, it's just that it happened to be counted 3 times. so we need to add back on the line y = x to our possible lines.
so we now see that there are 4C2-3C2 + 1 = 4 possible lines in total, namely y =x, the line from (1,1) to (4,2), the line from (2,2) to (4,2), and the line from (3,3) to (4,2). you can then scale this up to include as many points as you want, same logic applies
looks right to me
Alright thankslooks right to me