• Best of luck to the class of 2024 for their HSC exams. You got this!
    Let us know your thoughts on the HSC exams here
  • YOU can help the next generation of students in the community!
    Share your trial papers and notes on our Notes & Resources page
MedVision ad

hey guys complex numbers question (1 Viewer)

RealiseNothing

what is that?It is Cowpea
Joined
Jul 10, 2011
Messages
4,591
Location
Sydney
Gender
Male
HSC
2013
I'm going to have a random guess and say 2d from the 2010 paper.
 

deswa1

Well-Known Member
Joined
Jul 12, 2011
Messages
2,256
Gender
Male
HSC
2012
Basically just mutliply the vector z1a by i to rotate it 90 degrees:

<a href="http://www.codecogs.com/eqnedit.php?latex=(i)(z_{1}-a)=(z_{2}-a)\\ iz_{1}-ai=z_{2}-a \\z_{2}=a(1-i)@plus;iz_{1}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?(i)(z_{1}-a)=(z_{2}-a)\\ iz_{1}-ai=z_{2}-a \\z_{2}=a(1-i)+iz_{1}" title="(i)(z_{1}-a)=(z_{2}-a)\\ iz_{1}-ai=z_{2}-a \\z_{2}=a(1-i)+iz_{1}" /></a>
 

Nooblet94

Premium Member
Joined
Feb 5, 2011
Messages
1,044
Gender
Male
HSC
2012
<a href="http://www.codecogs.com/eqnedit.php?latex=$Let $a@plus;ib=\sqrt{21-20i}\\ \therefore (a@plus;ib)^2=a^2@plus;2abi-b^2=21-20i\\ ~\\ $Equating Real and Imaginary parts we get$\\ a^2-b^2=21~~~~~~~~(1)\\ 2ab=-20\\ ab=-10\\ b=-\frac{10}{a}~~~~~~~~~~~~~~~~(2)\\ ~\\ $Subbing (2) into (1):$\\ a^2-\frac{100}{a^2}=21 a^4-21a^2-100=0\\ a^2=\frac{21 \pm \sqrt{21^2@plus;4\cdot 100}}{2}=\frac{21\pm 29}{2}=25 (Since a is real)\\ \therefore a=\pm 5\\ b=\frac{-10}{5}=-2\\ \\ $Hence $\sqrt{21-20i}=\pm(5-2i)" target="_blank"><img src="http://latex.codecogs.com/gif.latex?$Let $a+ib=\sqrt{21-20i}\\ \therefore (a+ib)^2=a^2+2abi-b^2=21-20i\\ ~\\ $Equating Real and Imaginary parts we get$\\ a^2-b^2=21~~~~~~~~(1)\\ 2ab=-20\\ ab=-10\\ b=-\frac{10}{a}~~~~~~~~~~~~~~~~(2)\\ ~\\ $Subbing (2) into (1):$\\ a^2-\frac{100}{a^2}=21 a^4-21a^2-100=0\\ a^2=\frac{21 \pm \sqrt{21^2+4\cdot 100}}{2}=\frac{21\pm 29}{2}=25 (Since a is real)\\ \therefore a=\pm 5\\ b=\frac{-10}{5}=-2\\ \\ $Hence $\sqrt{21-20i}=\pm(5-2i)" title="$Let $a+ib=\sqrt{21-20i}\\ \therefore (a+ib)^2=a^2+2abi-b^2=21-20i\\ ~\\ $Equating Real and Imaginary parts we get$\\ a^2-b^2=21~~~~~~~~(1)\\ 2ab=-20\\ ab=-10\\ b=-\frac{10}{a}~~~~~~~~~~~~~~~~(2)\\ ~\\ $Subbing (2) into (1):$\\ a^2-\frac{100}{a^2}=21 a^4-21a^2-100=0\\ a^2=\frac{21 \pm \sqrt{21^2+4\cdot 100}}{2}=\frac{21\pm 29}{2}=25 (Since a is real)\\ \therefore a=\pm 5\\ b=\frac{-10}{5}=-2\\ \\ $Hence $\sqrt{21-20i}=\pm(5-2i)" /></a>

After typing this all out I realised that there's worked solutions at the end of that paper.
 

kingkong123

Member
Joined
Dec 20, 2011
Messages
98
Gender
Male
HSC
2012
<a href="http://www.codecogs.com/eqnedit.php?latex=$Let $a@plus;ib=\sqrt{21-20i}\\ \therefore (a@plus;ib)^2=a^2@plus;2abi-b^2=21-20i\\ ~\\ $Equating Real and Imaginary parts we get$\\ a^2-b^2=21~~~~~~~~(1)\\ 2ab=-20\\ ab=-10\\ b=-\frac{10}{a}~~~~~~~~~~~~~~~~(2)\\ ~\\ $Subbing (2) into (1):$\\ a^2-\frac{100}{a^2}=21 a^4-21a^2-100=0\\ a^2=\frac{21 \pm \sqrt{21^2@plus;4\cdot 100}}{2}=\frac{21\pm 29}{2}=25 (Since a is real)\\ \therefore a=\pm 5\\ b=\frac{-10}{5}=-2\\ \\ $Hence $\sqrt{21-20i}=\pm(5-2i)" target="_blank"><img src="http://latex.codecogs.com/gif.latex?$Let $a+ib=\sqrt{21-20i}\\ \therefore (a+ib)^2=a^2+2abi-b^2=21-20i\\ ~\\ $Equating Real and Imaginary parts we get$\\ a^2-b^2=21~~~~~~~~(1)\\ 2ab=-20\\ ab=-10\\ b=-\frac{10}{a}~~~~~~~~~~~~~~~~(2)\\ ~\\ $Subbing (2) into (1):$\\ a^2-\frac{100}{a^2}=21 a^4-21a^2-100=0\\ a^2=\frac{21 \pm \sqrt{21^2+4\cdot 100}}{2}=\frac{21\pm 29}{2}=25 (Since a is real)\\ \therefore a=\pm 5\\ b=\frac{-10}{5}=-2\\ \\ $Hence $\sqrt{21-20i}=\pm(5-2i)" title="$Let $a+ib=\sqrt{21-20i}\\ \therefore (a+ib)^2=a^2+2abi-b^2=21-20i\\ ~\\ $Equating Real and Imaginary parts we get$\\ a^2-b^2=21~~~~~~~~(1)\\ 2ab=-20\\ ab=-10\\ b=-\frac{10}{a}~~~~~~~~~~~~~~~~(2)\\ ~\\ $Subbing (2) into (1):$\\ a^2-\frac{100}{a^2}=21 a^4-21a^2-100=0\\ a^2=\frac{21 \pm \sqrt{21^2+4\cdot 100}}{2}=\frac{21\pm 29}{2}=25 (Since a is real)\\ \therefore a=\pm 5\\ b=\frac{-10}{5}=-2\\ \\ $Hence $\sqrt{21-20i}=\pm(5-2i)" /></a>

After typing this all out I realised that there's worked solutions at the end of that paper.
not to mention u did the wrong question :L


Basically just mutliply the vector z1a by i to rotate it 90 degrees:

<a href="http://www.codecogs.com/eqnedit.php?latex=(i)(z_{1}-a)=(z_{2}-a)\\ iz_{1}-ai=z_{2}-a \\z_{2}=a(1-i)@plus;iz_{1}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?(i)(z_{1}-a)=(z_{2}-a)\\ iz_{1}-ai=z_{2}-a \\z_{2}=a(1-i)+iz_{1}" title="(i)(z_{1}-a)=(z_{2}-a)\\ iz_{1}-ai=z_{2}-a \\z_{2}=a(1-i)+iz_{1}" /></a>
this stems from the fact that

<a href="http://www.codecogs.com/eqnedit.php?latex=\overrightarrow{AZ_1}=Z_1-A\\$and $ \overrightarrow{AZ_2}=Z_2-A" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\overrightarrow{AZ_1}=Z_1-A\\$and $ \overrightarrow{AZ_2}=Z_2-A" title="\overrightarrow{AZ_1}=Z_1-A\\$and $ \overrightarrow{AZ_2}=Z_2-A" /></a>
 
Last edited:

bleakarcher

Active Member
Joined
Jul 8, 2011
Messages
1,509
Gender
Male
HSC
2013
Basically just mutliply the vector z1a by i to rotate it 90 degrees:

<a href="http://www.codecogs.com/eqnedit.php?latex=(i)(z_{1}-a)=(z_{2}-a)\\ iz_{1}-ai=z_{2}-a \\z_{2}=a(1-i)@plus;iz_{1}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?(i)(z_{1}-a)=(z_{2}-a)\\ iz_{1}-ai=z_{2}-a \\z_{2}=a(1-i)+iz_{1}" title="(i)(z_{1}-a)=(z_{2}-a)\\ iz_{1}-ai=z_{2}-a \\z_{2}=a(1-i)+iz_{1}" /></a>
Good God, I can not believe I didn't realise that...thanks.
 

nightweaver066

Well-Known Member
Joined
Jul 7, 2010
Messages
1,585
Gender
Male
HSC
2012
not to mention u did the wrong question :L




this stems from the fact that

<a href="http://www.codecogs.com/eqnedit.php?latex=\overrightarrow{AZ_1}=Z_1-A\\$and $ \overrightarrow{AZ_2}=Z_2-A" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\overrightarrow{AZ_1}=Z_1-A\\$and $ \overrightarrow{AZ_2}=Z_2-A" title="\overrightarrow{AZ_1}=Z_1-A\\$and $ \overrightarrow{AZ_2}=Z_2-A" /></a>
I thought you weren't allowed to combine vector notation with complex numbers..
 

kingkong123

Member
Joined
Dec 20, 2011
Messages
98
Gender
Male
HSC
2012
I thought you weren't allowed to combine vector notation with complex numbers..
:spzz: where did u hear that from? all of terry lee's worked examples and solutions in geometrical applications of complex numbers use vector notation
 

kingkong123

Member
Joined
Dec 20, 2011
Messages
98
Gender
Male
HSC
2012
lol that's not what i meant. For e.g.

or
is what im talking about; is that wat u mean by combining vector notation with complex numbers? when u say 'not allowed', do u mean not board approved or your not allowed because it wont work?
 

nightweaver066

Well-Known Member
Joined
Jul 7, 2010
Messages
1,585
Gender
Male
HSC
2012
is what im talking about; is that wat u mean by combining vector notation with complex numbers? when u say 'not allowed', do u mean not board approved or your not allowed because it wont work?
I'm not sure why, it's just what my tutor instilled in me :)
 

IamBread

Member
Joined
Oct 24, 2011
Messages
757
Location
UNSW
Gender
Male
HSC
2011
The arrow above is correct notation for all vectors, including complex ones.
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top