bleakarcher
Active Member
- Joined
- Jul 8, 2011
- Messages
- 1,509
- Gender
- Male
- HSC
- 2013
how would you go about q2 d?
not to mention u did the wrong question :L<a href="http://www.codecogs.com/eqnedit.php?latex=$Let $a@plus;ib=\sqrt{21-20i}\\ \therefore (a@plus;ib)^2=a^2@plus;2abi-b^2=21-20i\\ ~\\ $Equating Real and Imaginary parts we get$\\ a^2-b^2=21~~~~~~~~(1)\\ 2ab=-20\\ ab=-10\\ b=-\frac{10}{a}~~~~~~~~~~~~~~~~(2)\\ ~\\ $Subbing (2) into (1):$\\ a^2-\frac{100}{a^2}=21 a^4-21a^2-100=0\\ a^2=\frac{21 \pm \sqrt{21^2@plus;4\cdot 100}}{2}=\frac{21\pm 29}{2}=25 (Since a is real)\\ \therefore a=\pm 5\\ b=\frac{-10}{5}=-2\\ \\ $Hence $\sqrt{21-20i}=\pm(5-2i)" target="_blank"><img src="http://latex.codecogs.com/gif.latex?$Let $a+ib=\sqrt{21-20i}\\ \therefore (a+ib)^2=a^2+2abi-b^2=21-20i\\ ~\\ $Equating Real and Imaginary parts we get$\\ a^2-b^2=21~~~~~~~~(1)\\ 2ab=-20\\ ab=-10\\ b=-\frac{10}{a}~~~~~~~~~~~~~~~~(2)\\ ~\\ $Subbing (2) into (1):$\\ a^2-\frac{100}{a^2}=21 a^4-21a^2-100=0\\ a^2=\frac{21 \pm \sqrt{21^2+4\cdot 100}}{2}=\frac{21\pm 29}{2}=25 (Since a is real)\\ \therefore a=\pm 5\\ b=\frac{-10}{5}=-2\\ \\ $Hence $\sqrt{21-20i}=\pm(5-2i)" title="$Let $a+ib=\sqrt{21-20i}\\ \therefore (a+ib)^2=a^2+2abi-b^2=21-20i\\ ~\\ $Equating Real and Imaginary parts we get$\\ a^2-b^2=21~~~~~~~~(1)\\ 2ab=-20\\ ab=-10\\ b=-\frac{10}{a}~~~~~~~~~~~~~~~~(2)\\ ~\\ $Subbing (2) into (1):$\\ a^2-\frac{100}{a^2}=21 a^4-21a^2-100=0\\ a^2=\frac{21 \pm \sqrt{21^2+4\cdot 100}}{2}=\frac{21\pm 29}{2}=25 (Since a is real)\\ \therefore a=\pm 5\\ b=\frac{-10}{5}=-2\\ \\ $Hence $\sqrt{21-20i}=\pm(5-2i)" /></a>
After typing this all out I realised that there's worked solutions at the end of that paper.
this stems from the fact thatBasically just mutliply the vector z1a by i to rotate it 90 degrees:
<a href="http://www.codecogs.com/eqnedit.php?latex=(i)(z_{1}-a)=(z_{2}-a)\\ iz_{1}-ai=z_{2}-a \\z_{2}=a(1-i)@plus;iz_{1}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?(i)(z_{1}-a)=(z_{2}-a)\\ iz_{1}-ai=z_{2}-a \\z_{2}=a(1-i)+iz_{1}" title="(i)(z_{1}-a)=(z_{2}-a)\\ iz_{1}-ai=z_{2}-a \\z_{2}=a(1-i)+iz_{1}" /></a>
Good God, I can not believe I didn't realise that...thanks.Basically just mutliply the vector z1a by i to rotate it 90 degrees:
<a href="http://www.codecogs.com/eqnedit.php?latex=(i)(z_{1}-a)=(z_{2}-a)\\ iz_{1}-ai=z_{2}-a \\z_{2}=a(1-i)@plus;iz_{1}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?(i)(z_{1}-a)=(z_{2}-a)\\ iz_{1}-ai=z_{2}-a \\z_{2}=a(1-i)+iz_{1}" title="(i)(z_{1}-a)=(z_{2}-a)\\ iz_{1}-ai=z_{2}-a \\z_{2}=a(1-i)+iz_{1}" /></a>
I thought you weren't allowed to combine vector notation with complex numbers..not to mention u did the wrong question :L
this stems from the fact that
<a href="http://www.codecogs.com/eqnedit.php?latex=\overrightarrow{AZ_1}=Z_1-A\\$and $ \overrightarrow{AZ_2}=Z_2-A" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\overrightarrow{AZ_1}=Z_1-A\\$and $ \overrightarrow{AZ_2}=Z_2-A" title="\overrightarrow{AZ_1}=Z_1-A\\$and $ \overrightarrow{AZ_2}=Z_2-A" /></a>
where did u hear that from? all of terry lee's worked examples and solutions in geometrical applications of complex numbers use vector notationI thought you weren't allowed to combine vector notation with complex numbers..
lol that's not what i meant. For e.g.where did u hear that from? all of terry lee's worked examples and solutions in geometrical applications of complex numbers use vector notation
is what im talking about; is that wat u mean by combining vector notation with complex numbers? when u say 'not allowed', do u mean not board approved or your not allowed because it wont work?lol that's not what i meant. For e.g.
or
I'm not sure why, it's just what my tutor instilled in meis what im talking about; is that wat u mean by combining vector notation with complex numbers? when u say 'not allowed', do u mean not board approved or your not allowed because it wont work?
bad tutor is bad,I'm not sure why, it's just what my tutor instilled in me