Re: 2012 HSC MX2 Marathon
MOAR CONICS!!
<a href="http://www.codecogs.com/eqnedit.php?latex=\\ $(Q1)$\\ $Prove that the pair of tangents from the point $ P(4,5)$ to the ellipse $ \frac{x^2}{25}@plus;\frac{y^2}{16}=1 $ are at right angles to one another$~\\ \\ $(Q2)$\\ $Obtain the quadratic equation satisfied by $m$ where $m$ is the gradient of the tangent $ y=mx@plus;c$ from the external point $P(x_1,y_1)$ to the ellipse $\frac{x^2}{a^2}@plus;\frac{y^2}{b^2}=1 $. Hence, find the locus of $P$ if the two tangents from $P$ are at right angles.$" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\\ $(Q1)$\\ $Prove that the pair of tangents from the point $ P(4,5)$ to the ellipse $ \frac{x^2}{25}+\frac{y^2}{16}=1 $ are at right angles to one another$~\\ \\ $(Q2)$\\ $Obtain the quadratic equation satisfied by $m$ where $m$ is the gradient of the tangent $ y=mx+c$ from the external point $P(x_1,y_1)$ to the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 $. Hence, find the locus of $P$ if the two tangents from $P$ are at right angles.$" title="\\ $(Q1)$\\ $Prove that the pair of tangents from the point $ P(4,5)$ to the ellipse $ \frac{x^2}{25}+\frac{y^2}{16}=1 $ are at right angles to one another$~\\ \\ $(Q2)$\\ $Obtain the quadratic equation satisfied by $m$ where $m$ is the gradient of the tangent $ y=mx+c$ from the external point $P(x_1,y_1)$ to the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 $. Hence, find the locus of $P$ if the two tangents from $P$ are at right angles.$" /></a>